Inverse Solution of Geodesics on the Ellipsoid - Node.js Geometry

Node.js examples for Geometry:Trigonometric functions

Description

Inverse Solution of Geodesics on the Ellipsoid

Demo Code

/**/*from  www. ja  v  a  2s. com*/
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
/* Vincenty Inverse Solution of Geodesics on the Ellipsoid (c) Chris Veness 2002-2011             */
/*                                                                                                */
/* from: Vincenty inverse formula - T Vincenty, "Direct and Inverse Solutions of Geodesics on the */
/*       Ellipsoid with application of nested equations", Survey Review, vol XXII no 176, 1975    */
/*       http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf                                             */
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
 
/**
 * Calculates geodetic distance between two points specified by latitude/longitude using 
 * Vincenty inverse formula for ellipsoids
 *
 * @param   {Number} lat1, lon1: first point in decimal degrees
 * @param   {Number} lat2, lon2: second point in decimal degrees
 * @returns (Number} distance in metres between points
 */
function distVincenty(lat1, lon1, lat2, lon2) {
  var a = 6378137, b = 6356752.3142,  f = 1/298.257223563;  // WGS-84 ellipsoid params
  var L = (lon2-lon1).toRad();
  var U1 = Math.atan((1-f) * Math.tan(lat1.toRad()));
  var U2 = Math.atan((1-f) * Math.tan(lat2.toRad()));
  var sinU1 = Math.sin(U1), cosU1 = Math.cos(U1);
  var sinU2 = Math.sin(U2), cosU2 = Math.cos(U2);
  
  var lambda = L, lambdaP, iterLimit = 100;
  do {
    var sinLambda = Math.sin(lambda), cosLambda = Math.cos(lambda);
    var sinSigma = Math.sqrt((cosU2*sinLambda) * (cosU2*sinLambda) + 
      (cosU1*sinU2-sinU1*cosU2*cosLambda) * (cosU1*sinU2-sinU1*cosU2*cosLambda));
    if (sinSigma==0) return 0;  // co-incident points
    var cosSigma = sinU1*sinU2 + cosU1*cosU2*cosLambda;
    var sigma = Math.atan2(sinSigma, cosSigma);
    var sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma;
    var cosSqAlpha = 1 - sinAlpha*sinAlpha;
    var cos2SigmaM = cosSigma - 2*sinU1*sinU2/cosSqAlpha;
    if (isNaN(cos2SigmaM)) cos2SigmaM = 0;  // equatorial line: cosSqAlpha=0 (?6)
    var C = f/16*cosSqAlpha*(4+f*(4-3*cosSqAlpha));
    lambdaP = lambda;
    lambda = L + (1-C) * f * sinAlpha *
      (sigma + C*sinSigma*(cos2SigmaM+C*cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)));
  } while (Math.abs(lambda-lambdaP) > 1e-12 && --iterLimit>0);
  if (iterLimit==0) return NaN  // formula failed to converge
 
  var uSq = cosSqAlpha * (a*a - b*b) / (b*b);
  var A = 1 + uSq/16384*(4096+uSq*(-768+uSq*(320-175*uSq)));
  var B = uSq/1024 * (256+uSq*(-128+uSq*(74-47*uSq)));
  var deltaSigma = B*sinSigma*(cos2SigmaM+B/4*(cosSigma*(-1+2*cos2SigmaM*cos2SigmaM)-
    B/6*cos2SigmaM*(-3+4*sinSigma*sinSigma)*(-3+4*cos2SigmaM*cos2SigmaM)));
  var s = b*A*(sigma-deltaSigma);
  
  s = s.toFixed(3); // round to 1mm precision
  return s;
  
  // note: to return initial/final bearings in addition to distance, use something like:
  var fwdAz = Math.atan2(cosU2*sinLambda,  cosU1*sinU2-sinU1*cosU2*cosLambda);
  var revAz = Math.atan2(cosU1*sinLambda, -sinU1*cosU2+cosU1*sinU2*cosLambda);
  return { distance: s, initialBearing: fwdAz.toDeg(), finalBearing: revAz.toDeg() };
}
 
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  */
 
/** extend Number object with methods for converting degrees/radians */
Number.prototype.toRad = function() {  // convert degrees to radians
  return this * Math.PI / 180;
}
Number.prototype.toDeg = function() {  // convert radians to degrees
  return this * 180 / Math.PI;
}

Related Tutorials