Java examples for Reflection:Method
Find an accessible method that matches the given name and has compatible parameters.
/*//from w w w . j a v a 2 s. c o m * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ import java.lang.ref.Reference; import java.lang.ref.WeakReference; import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; import java.lang.reflect.Modifier; import java.util.Collections; import java.util.Map; import java.util.WeakHashMap; public class Main{ /** * Only log warning about accessibility work around once. * <p> * Note that this is broken when this class is deployed via a shared * classloader in a container, as the warning message will be emitted * only once, not once per webapp. However making the warning appear * once per webapp means having a map keyed by context classloader * which introduces nasty memory-leak problems. As this warning is * really optional we can ignore this problem; only one of the webapps * will get the warning in its logs but that should be good enough. */ private static boolean loggedAccessibleWarning = false; /** * Indicates whether methods should be cached for improved performance. * <p> * Note that when this class is deployed via a shared classloader in * a container, this will affect all webapps. However making this * configurable per webapp would mean having a map keyed by context classloader * which may introduce memory-leak problems. */ private static boolean CACHE_METHODS = true; /** * Stores a cache of MethodDescriptor -> Method in a WeakHashMap. * <p> * The keys into this map only ever exist as temporary variables within * methods of this class, and are never exposed to users of this class. * This means that the WeakHashMap is used only as a mechanism for * limiting the size of the cache, ie a way to tell the garbage collector * that the contents of the cache can be completely garbage-collected * whenever it needs the memory. Whether this is a good approach to * this problem is doubtful; something like the commons-collections * LRUMap may be more appropriate (though of course selecting an * appropriate size is an issue). * <p> * This static variable is safe even when this code is deployed via a * shared classloader because it is keyed via a MethodDescriptor object * which has a Class as one of its members and that member is used in * the MethodDescriptor.equals method. So two components that load the same * class via different classloaders will generate non-equal MethodDescriptor * objects and hence end up with different entries in the map. */ private static final Map cache = Collections .synchronizedMap(new WeakHashMap()); /** * <p>Find an accessible method that matches the given name and has compatible parameters. * Compatible parameters mean that every method parameter is assignable from * the given parameters. * In other words, it finds a method with the given name * that will take the parameters given.<p> * * <p>This method is slightly undeterminstic since it loops * through methods names and return the first matching method.</p> * * <p>This method is used by * {@link * #invokeMethod(Object object,String methodName,Object [] args,Class[] parameterTypes)}. * * <p>This method can match primitive parameter by passing in wrapper classes. * For example, a <code>Boolean</code> will match a primitive <code>boolean</code> * parameter. * * @param clazz find method in this class * @param methodName find method with this name * @param parameterTypes find method with compatible parameters * @return The accessible method */ public static Method getMatchingAccessibleMethod(Class clazz, String methodName, Class[] parameterTypes) { // trace logging MethodDescriptor md = new MethodDescriptor(clazz, methodName, parameterTypes, false); // see if we can find the method directly // most of the time this works and it's much faster try { // Check the cache first Method method = getCachedMethod(md); if (method != null) { return method; } method = clazz.getMethod(methodName, parameterTypes); setMethodAccessible(method); // Default access superclass workaround cacheMethod(md, method); return method; } catch (NoSuchMethodException e) { /* SWALLOW */ } // search through all methods int paramSize = parameterTypes.length; Method bestMatch = null; Method[] methods = clazz.getMethods(); float bestMatchCost = Float.MAX_VALUE; float myCost = Float.MAX_VALUE; for (int i = 0, size = methods.length; i < size; i++) { if (methods[i].getName().equals(methodName)) { // log some trace information // compare parameters Class[] methodsParams = methods[i].getParameterTypes(); int methodParamSize = methodsParams.length; if (methodParamSize == paramSize) { boolean match = true; for (int n = 0; n < methodParamSize; n++) { if (!isAssignmentCompatible(methodsParams[n], parameterTypes[n])) { match = false; break; } } if (match) { // get accessible version of method Method method = getAccessibleMethod(clazz, methods[i]); if (method != null) { setMethodAccessible(method); // Default access superclass workaround myCost = getTotalTransformationCost( parameterTypes, method.getParameterTypes()); if (myCost < bestMatchCost) { bestMatch = method; bestMatchCost = myCost; } } } } } } if (bestMatch != null) { cacheMethod(md, bestMatch); } return bestMatch; } /** * Return the method from the cache, if present. * * @param md The method descriptor * @return The cached method */ private static Method getCachedMethod(MethodDescriptor md) { if (CACHE_METHODS) { Reference methodRef = (Reference) cache.get(md); if (methodRef != null) { return (Method) methodRef.get(); } } return null; } /** * Try to make the method accessible * @param method The source arguments */ private static void setMethodAccessible(Method method) { try { // // XXX Default access superclass workaround // // When a public class has a default access superclass // with public methods, these methods are accessible. // Calling them from compiled code works fine. // // Unfortunately, using reflection to invoke these methods // seems to (wrongly) to prevent access even when the method // modifer is public. // // The following workaround solves the problem but will only // work from sufficiently privilages code. // // Better workarounds would be greatfully accepted. // if (!method.isAccessible()) { method.setAccessible(true); } } catch (SecurityException se) { // log but continue just in case the method.invoke works anyway if (!loggedAccessibleWarning) { boolean vulnerableJVM = false; try { String specVersion = System .getProperty("java.specification.version"); if (specVersion.charAt(0) == '1' && (specVersion.charAt(2) == '0' || specVersion.charAt(2) == '1' || specVersion.charAt(2) == '2' || specVersion .charAt(2) == '3')) { vulnerableJVM = true; } } catch (SecurityException e) { // don't know - so display warning vulnerableJVM = true; } loggedAccessibleWarning = true; } } } /** * Add a method to the cache. * * @param md The method descriptor * @param method The method to cache */ private static void cacheMethod(MethodDescriptor md, Method method) { if (CACHE_METHODS) { if (method != null) { cache.put(md, new WeakReference(method)); } } } /** * <p>Determine whether a type can be used as a parameter in a method invocation. * This method handles primitive conversions correctly.</p> * * <p>In order words, it will match a <code>Boolean</code> to a <code>boolean</code>, * a <code>Long</code> to a <code>long</code>, * a <code>Float</code> to a <code>float</code>, * a <code>Integer</code> to a <code>int</code>, * and a <code>Double</code> to a <code>double</code>. * Now logic widening matches are allowed. * For example, a <code>Long</code> will not match a <code>int</code>. * * @param parameterType the type of parameter accepted by the method * @param parameterization the type of parameter being tested * * @return true if the assignement is compatible. */ public static final boolean isAssignmentCompatible(Class parameterType, Class parameterization) { // try plain assignment if (parameterType.isAssignableFrom(parameterization)) { return true; } if (parameterType.isPrimitive()) { // this method does *not* do widening - you must specify exactly // is this the right behaviour? Class parameterWrapperClazz = getPrimitiveWrapper(parameterType); if (parameterWrapperClazz != null) { return parameterWrapperClazz.equals(parameterization); } } return false; } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) with given name and a single parameter. If no such method * can be found, return <code>null</code>. * Basically, a convenience wrapper that constructs a <code>Class</code> * array for you.</p> * * @param clazz get method from this class * @param methodName get method with this name * @param parameterType taking this type of parameter * @return The accessible method */ public static Method getAccessibleMethod(Class clazz, String methodName, Class parameterType) { Class[] parameterTypes = { parameterType }; return getAccessibleMethod(clazz, methodName, parameterTypes); } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) with given name and parameters. If no such method * can be found, return <code>null</code>. * This is just a convenient wrapper for * {@link #getAccessibleMethod(Method method)}.</p> * * @param clazz get method from this class * @param methodName get method with this name * @param parameterTypes with these parameters types * @return The accessible method */ public static Method getAccessibleMethod(Class clazz, String methodName, Class[] parameterTypes) { try { MethodDescriptor md = new MethodDescriptor(clazz, methodName, parameterTypes, true); // Check the cache first Method method = getCachedMethod(md); if (method != null) { return method; } method = getAccessibleMethod(clazz, clazz.getMethod(methodName, parameterTypes)); cacheMethod(md, method); return method; } catch (NoSuchMethodException e) { return (null); } } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) that implements the specified Method. If no such method * can be found, return <code>null</code>.</p> * * @param method The method that we wish to call * @return The accessible method */ public static Method getAccessibleMethod(Method method) { // Make sure we have a method to check if (method == null) { return (null); } return getAccessibleMethod(method.getDeclaringClass(), method); } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) that implements the specified Method. If no such method * can be found, return <code>null</code>.</p> * * @param clazz The class of the object * @param method The method that we wish to call * @return The accessible method * @since 1.8.0 */ public static Method getAccessibleMethod(Class clazz, Method method) { // Make sure we have a method to check if (method == null) { return (null); } // If the requested method is not public we cannot call it if (!Modifier.isPublic(method.getModifiers())) { return (null); } boolean sameClass = true; if (clazz == null) { clazz = method.getDeclaringClass(); } else { sameClass = clazz.equals(method.getDeclaringClass()); if (!method.getDeclaringClass().isAssignableFrom(clazz)) { throw new IllegalArgumentException(clazz.getName() + " is not assignable from " + method.getDeclaringClass().getName()); } } // If the class is public, we are done if (Modifier.isPublic(clazz.getModifiers())) { if (!sameClass && !Modifier.isPublic(method.getDeclaringClass() .getModifiers())) { setMethodAccessible(method); // Default access superclass workaround } return (method); } String methodName = method.getName(); Class[] parameterTypes = method.getParameterTypes(); // Check the implemented interfaces and subinterfaces method = getAccessibleMethodFromInterfaceNest(clazz, methodName, parameterTypes); // Check the superclass chain if (method == null) { method = getAccessibleMethodFromSuperclass(clazz, methodName, parameterTypes); } return (method); } /** * Returns the sum of the object transformation cost for each class in the source * argument list. * @param srcArgs The source arguments * @param destArgs The destination arguments * @return The total transformation cost */ private static float getTotalTransformationCost(Class[] srcArgs, Class[] destArgs) { float totalCost = 0.0f; for (int i = 0; i < srcArgs.length; i++) { Class srcClass, destClass; srcClass = srcArgs[i]; destClass = destArgs[i]; totalCost += getObjectTransformationCost(srcClass, destClass); } return totalCost; } /** * Gets the wrapper object class for the given primitive type class. * For example, passing <code>boolean.class</code> returns <code>Boolean.class</code> * @param primitiveType the primitive type class for which a match is to be found * @return the wrapper type associated with the given primitive * or null if no match is found */ public static Class getPrimitiveWrapper(Class primitiveType) { // does anyone know a better strategy than comparing names? if (boolean.class.equals(primitiveType)) { return Boolean.class; } else if (float.class.equals(primitiveType)) { return Float.class; } else if (long.class.equals(primitiveType)) { return Long.class; } else if (int.class.equals(primitiveType)) { return Integer.class; } else if (short.class.equals(primitiveType)) { return Short.class; } else if (byte.class.equals(primitiveType)) { return Byte.class; } else if (double.class.equals(primitiveType)) { return Double.class; } else if (char.class.equals(primitiveType)) { return Character.class; } else { return null; } } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) that implements the specified method, by scanning through * all implemented interfaces and subinterfaces. If no such method * can be found, return <code>null</code>.</p> * * <p> There isn't any good reason why this method must be private. * It is because there doesn't seem any reason why other classes should * call this rather than the higher level methods.</p> * * @param clazz Parent class for the interfaces to be checked * @param methodName Method name of the method we wish to call * @param parameterTypes The parameter type signatures */ private static Method getAccessibleMethodFromInterfaceNest(Class clazz, String methodName, Class[] parameterTypes) { Method method = null; // Search up the superclass chain for (; clazz != null; clazz = clazz.getSuperclass()) { // Check the implemented interfaces of the parent class Class[] interfaces = clazz.getInterfaces(); for (int i = 0; i < interfaces.length; i++) { // Is this interface public? if (!Modifier.isPublic(interfaces[i].getModifiers())) { continue; } // Does the method exist on this interface? try { method = interfaces[i].getDeclaredMethod(methodName, parameterTypes); } catch (NoSuchMethodException e) { /* Swallow, if no method is found after the loop then this * method returns null. */ } if (method != null) { return method; } // Recursively check our parent interfaces method = getAccessibleMethodFromInterfaceNest( interfaces[i], methodName, parameterTypes); if (method != null) { return method; } } } // We did not find anything return (null); } /** * <p>Return an accessible method (that is, one that can be invoked via * reflection) by scanning through the superclasses. If no such method * can be found, return <code>null</code>.</p> * * @param clazz Class to be checked * @param methodName Method name of the method we wish to call * @param parameterTypes The parameter type signatures */ private static Method getAccessibleMethodFromSuperclass(Class clazz, String methodName, Class[] parameterTypes) { Class parentClazz = clazz.getSuperclass(); while (parentClazz != null) { if (Modifier.isPublic(parentClazz.getModifiers())) { try { return parentClazz .getMethod(methodName, parameterTypes); } catch (NoSuchMethodException e) { return null; } } parentClazz = parentClazz.getSuperclass(); } return null; } /** * Gets the number of steps required needed to turn the source class into the * destination class. This represents the number of steps in the object hierarchy * graph. * @param srcClass The source class * @param destClass The destination class * @return The cost of transforming an object */ private static float getObjectTransformationCost(Class srcClass, Class destClass) { float cost = 0.0f; while (destClass != null && !destClass.equals(srcClass)) { if (destClass.isInterface() && isAssignmentCompatible(destClass, srcClass)) { // slight penalty for interface match. // we still want an exact match to override an interface match, but // an interface match should override anything where we have to get a // superclass. cost += 0.25f; break; } cost++; destClass = destClass.getSuperclass(); } /* * If the destination class is null, we've travelled all the way up to * an Object match. We'll penalize this by adding 1.5 to the cost. */ if (destClass == null) { cost += 1.5f; } return cost; } }