Java examples for Machine Learning AI:weka
Use weka aggregation classifiers
import weka.classifiers.bayes.NaiveBayes; import weka.classifiers.functions.LinearRegression; import weka.classifiers.functions.Logistic; import weka.classifiers.meta.AdaBoostM1; import weka.classifiers.meta.Bagging; import weka.classifiers.meta.Stacking; import weka.classifiers.meta.Vote; import weka.classifiers.trees.DecisionStump; import weka.classifiers.trees.J48; import weka.classifiers.trees.RandomForest; import weka.classifiers.trees.RandomTree; import weka.core.Instances; import weka.core.converters.ConverterUtils.DataSource; import weka.classifiers.Classifier; public class aggregation { public static void main(String[] args) throws Exception { DataSource source = new DataSource("weather.arff"); Instances traindata = source.getDataSet(); traindata.setClassIndex(traindata.numAttributes() - 1); /**//from www.j ava 2s .c o m * AdaBoost */ AdaBoostM1 m1 = new AdaBoostM1(); m1.setClassifier(new DecisionStump()); m1.setNumIterations(100); m1.buildClassifier(traindata); /** * bagging */ Bagging bagging = new Bagging(); bagging.setClassifier(new RandomTree()); bagging.setNumIterations(25); bagging.buildClassifier(traindata); /** * stacking */ Stacking stack = new Stacking(); stack.setMetaClassifier(new Logistic()); Classifier[] classifiers = { new J48(), new NaiveBayes(), new RandomForest() }; stack.setClassifiers(classifiers); stack.buildClassifier(traindata); /** * voting */ Vote vote = new Vote(); vote.setClassifiers(classifiers); vote.buildClassifier(traindata); } }