Java examples for Machine Learning AI:weka
Random Forest Image Classifier Trainer in weka
import java.io.File; import weka.classifiers.functions.LibSVM; import weka.classifiers.trees.RandomForest; import weka.core.Attribute; import weka.core.Instances; import weka.core.SerializationHelper; import weka.core.converters.ArffLoader; import weka.core.converters.Loader; import weka.gui.beans.Classifier; public class RandomForestImageClassifierTrainer { public static void main(String args[]) throws Exception { ArffLoader trainLoader = new ArffLoader(); trainLoader.setSource(new File("train.arff")); trainLoader.setRetrieval(Loader.BATCH); Instances trainDataSet = trainLoader.getDataSet(); Attribute trainAttribute = trainDataSet.attribute("class"); trainDataSet.setClass(trainAttribute); //trainDataSet.deleteStringAttributes(); RandomForest classifier = new RandomForest(); classifier.setNumTrees(500);/*w ww . j a v a 2 s. c om*/ classifier.setMaxDepth(30); classifier.setDebug(true); final double startTime = System.currentTimeMillis(); classifier.buildClassifier(trainDataSet); final double endTime = System.currentTimeMillis(); double executionTime = (endTime - startTime) / (1000.0); System.out.println("Total execution time: " + executionTime); SerializationHelper.write("classifier500.model", classifier); System.out.println("Saved trained model to classifier.model"); } }