Java examples for java.math:BigDecimal
Returns the standard deviation of the BigDecimal.
//package com.java2s; import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; import java.math.RoundingMode; import java.util.ArrayList; import java.util.List; public class Main { public static final BigDecimal TWO = BigDecimal.valueOf(2); /**// w ww.j a va 2s . c o m * Returns the standard deviation of the numbers. * <p/> * Double.NaN is returned if the numbers list is empty. * * @param numbers the numbers to calculate the standard deviation. * @param biasCorrected true if variance is calculated by dividing by n - 1. False if by n. stddev is a sqrt of the * variance. * @param context the MathContext * @return the standard deviation */ public static BigDecimal stddev(List<BigDecimal> numbers, boolean biasCorrected, MathContext context) { BigDecimal stddev; int n = numbers.size(); if (n > 0) { if (n > 1) { stddev = sqrt(var(numbers, biasCorrected, context)); } else { stddev = BigDecimal.ZERO; } } else { stddev = BigDecimal.valueOf(Double.NaN); } return stddev; } /** * Calculates the square root of the number. * * @param number the input number. * @return the square root of the input number. */ public static BigDecimal sqrt(BigDecimal number) { int digits; // final precision BigDecimal numberToBeSquareRooted; BigDecimal iteration1; BigDecimal iteration2; BigDecimal temp1 = null; BigDecimal temp2 = null; // temp values int extraPrecision = number.precision(); MathContext mc = new MathContext(extraPrecision, RoundingMode.HALF_UP); numberToBeSquareRooted = number; // bd global variable double num = numberToBeSquareRooted.doubleValue(); // bd to double if (mc.getPrecision() == 0) throw new IllegalArgumentException( "\nRoots need a MathContext precision > 0"); if (num < 0.) throw new ArithmeticException( "\nCannot calculate the square root of a negative number"); if (num == 0.) return number.round(mc); // return sqrt(0) immediately if (mc.getPrecision() < 50) // small precision is buggy.. extraPrecision += 10; // ..make more precise int startPrecision = 1; // default first precision /* create the initial values for the iteration procedure: * x0: x ~ sqrt(d) * v0: v = 1/(2*x) */ if (num == Double.POSITIVE_INFINITY) // d > 1.7E308 { BigInteger bi = numberToBeSquareRooted.unscaledValue(); int biLen = bi.bitLength(); int biSqrtLen = biLen / 2; // floors it too bi = bi.shiftRight(biSqrtLen); // bad guess sqrt(d) iteration1 = new BigDecimal(bi); // x ~ sqrt(d) MathContext mm = new MathContext(5, RoundingMode.HALF_DOWN); // minimal precision extraPrecision += 10; // make up for it later iteration2 = BigDecimal.ONE.divide( TWO.multiply(iteration1, mm), mm); // v = 1/(2*x) } else // d < 1.7E10^308 (the usual numbers) { double s = Math.sqrt(num); iteration1 = new BigDecimal(s); // x = sqrt(d) iteration2 = new BigDecimal(1. / 2. / s); // v = 1/2/x // works because Double.MIN_VALUE * Double.MAX_VALUE ~ 9E-16, so: v > 0 startPrecision = 64; } digits = mc.getPrecision() + extraPrecision; // global limit for procedure // create initial MathContext(precision, RoundingMode) MathContext n = new MathContext(startPrecision, mc.getRoundingMode()); return sqrtProcedure(n, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // return square root using argument precision } /** * Computes the variance of the available values. By default, the unbiased "sample variance" definitional formula is * used: variance = sum((x_i - mean)^2) / (n - 1) * <p/> * The "population variance" ( sum((x_i - mean)^2) / n ) can also be computed using this statistic. The * <code>biasCorrected</code> property determines whether the "population" or "sample" value is returned by the * <code>evaluate</code> and <code>getResult</code> methods. To compute population variances, set this property to * <code>false</code>. * * @param numbers the numbers to calculate the variance. * @param biasCorrected true if variance is calculated by dividing by n - 1. False if by n. * @param context the MathContext * @return the variance of the numbers. */ public static BigDecimal var(List<BigDecimal> numbers, boolean biasCorrected, MathContext context) { int n = numbers.size(); if (n == 0) { return BigDecimal.valueOf(Double.NaN); } else if (n == 1) { return BigDecimal.ZERO; } BigDecimal mean = mean(numbers, context); List<BigDecimal> squares = new ArrayList<BigDecimal>(); for (BigDecimal number : numbers) { BigDecimal XminMean = number.subtract(mean); squares.add(XminMean.pow(2, context)); } BigDecimal sum = sum(squares); return sum.divide(new BigDecimal(biasCorrected ? numbers.size() - 1 : numbers.size()), context); } /** * Square root by coupled Newton iteration, sqrtProcedure() is the iteration part I adopted the Algorithm from the * book "Pi-unleashed", so now it looks more natural I give sparse math comments from the book, it assumes argument * mc precision >= 1 * * @param mc * @param digits * @param numberToBeSquareRooted * @param iteration1 * @param iteration2 * @param temp1 * @param temp2 * @return */ @SuppressWarnings({ "JavaDoc" }) private static BigDecimal sqrtProcedure(MathContext mc, int digits, BigDecimal numberToBeSquareRooted, BigDecimal iteration1, BigDecimal iteration2, BigDecimal temp1, BigDecimal temp2) { // next v // g = 1 - 2*x*v temp1 = BigDecimal.ONE.subtract(TWO.multiply(iteration1, mc) .multiply(iteration2, mc), mc); iteration2 = iteration2.add(temp1.multiply(iteration2, mc), mc); // v += g*v ~ 1/2/sqrt(d) // next x temp2 = numberToBeSquareRooted.subtract( iteration1.multiply(iteration1, mc), mc); // e = d - x^2 iteration1 = iteration1.add(temp2.multiply(iteration2, mc), mc); // x += e*v ~ sqrt(d) // increase precision int m = mc.getPrecision(); if (m < 2) m++; else m = m * 2 - 1; // next Newton iteration supplies so many exact digits if (m < 2 * digits) // digits limit not yet reached? { mc = new MathContext(m, mc.getRoundingMode()); // apply new precision sqrtProcedure(mc, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // next iteration } return iteration1; // returns the iterated square roots } /** * Returns the mean number in the numbers list. * * @param numbers the numbers to calculate the mean. * @param context the MathContext. * @return the mean of the numbers. */ public static BigDecimal mean(List<BigDecimal> numbers, MathContext context) { BigDecimal sum = sum(numbers); return sum.divide(new BigDecimal(numbers.size()), context); } /** * Returns the sum number in the numbers list. * * @param numbers the numbers to calculate the sum. * @return the sum of the numbers. */ public static BigDecimal sum(List<BigDecimal> numbers) { BigDecimal sum = new BigDecimal(0); for (BigDecimal bigDecimal : numbers) { sum = sum.add(bigDecimal); } return sum; } }