Java examples for java.lang:Math Prime Number
sqrt Mod Prime
/*//w w w .java 2 s. c om * UniCrypt * * UniCrypt(tm) : Cryptographical framework allowing the implementation of cryptographic protocols e.g. e-voting * Copyright (C) 2014 Bern University of Applied Sciences (BFH), Research Institute for * Security in the Information Society (RISIS), E-Voting Group (EVG) * Quellgasse 21, CH-2501 Biel, Switzerland * * Licensed under Dual License consisting of: * 1. GNU Affero General Public License (AGPL) v3 * and * 2. Commercial license * * * 1. This program is free software: you can redistribute it and/or modify * it under the terms of the GNU Affero General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Affero General Public License for more details. * * You should have received a copy of the GNU Affero General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * * * 2. Licensees holding valid commercial licenses for UniCrypt may use this file in * accordance with the commercial license agreement provided with the * Software or, alternatively, in accordance with the terms contained in * a written agreement between you and Bern University of Applied Sciences (BFH), Research Institute for * Security in the Information Society (RISIS), E-Voting Group (EVG) * Quellgasse 21, CH-2501 Biel, Switzerland. * * * For further information contact <e-mail: unicrypt@bfh.ch> * * * Redistributions of files must retain the above copyright notice. */ //package com.java2s; import java.math.BigInteger; public class Main { public static BigInteger sqrtModPrime(BigInteger rSquare, BigInteger p) { BigInteger two = new BigInteger("2"); BigInteger z = two; //z which must be a quadratic non-residue mod p. while (hasSqrtModPrime(z, p)) { z = z.add(BigInteger.ONE); } if (!hasSqrtModPrime(rSquare, p)) { throw new UnknownError("r has no square root"); } else { if (p.mod(new BigInteger("4")).equals(new BigInteger("3"))) { return rSquare.modPow( p.add(BigInteger.ONE).divide(new BigInteger("4")), p); } else { BigInteger pMin1 = p.subtract(BigInteger.ONE); //p-1 BigInteger s = BigInteger.ONE; BigInteger q = pMin1.divide(two); //Finding Q while (q.mod(two).equals(BigInteger.ZERO)) { q = q.divide(two); s = s.add(BigInteger.ONE); } BigInteger c = z.modPow(q, p); BigInteger r = rSquare.modPow( q.add(BigInteger.ONE).divide(two), p); BigInteger t = rSquare.modPow(q, p); BigInteger m = s; //Loop until t==1 while (!t.equals(BigInteger.ONE)) { BigInteger i = BigInteger.ZERO; while (!BigInteger.ONE.equals(t.modPow( two.modPow(i, p), p))) { i = i.add(BigInteger.ONE); } BigInteger b = c.modPow(two.modPow(m.subtract(i) .subtract(BigInteger.ONE), p), p); r = r.multiply(b).mod(p); t = t.multiply(b.pow(2)).mod(p); c = b.modPow(two, p); m = i; } if (r.modPow(two, p).equals(rSquare.mod(p))) { return r; } else { throw new IllegalArgumentException("Tonnelli fails..."); } } } } public static boolean hasSqrtModPrime(BigInteger r, BigInteger p) { BigInteger two = new BigInteger("2"); return r.modPow(p.subtract(BigInteger.ONE).divide(two), p).equals( BigInteger.ONE); } }