Java examples for java.lang:Math Calculation
Returns the logarithm of the Beta function.
/*/*from www . j a v a 2 s.com*/ * ------------------------------------------------------------------------= * Copyright (C) 1997 - 1998 by Visual Numerics, Inc. All rights reserved. * * Permission to use, copy, modify, and distribute this software is freely * granted by Visual Numerics, Inc., provided that the copyright notice * above and the following warranty disclaimer are preserved in human * readable form. * * Because this software is licenses free of charge, it is provided * "AS IS", with NO WARRANTY. TO THE EXTENT PERMITTED BY LAW, VNI * DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED * TO ITS PERFORMANCE, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. * VNI WILL NOT BE LIABLE FOR ANY DAMAGES WHATSOEVER ARISING OUT OF THE USE * OF OR INABILITY TO USE THIS SOFTWARE, INCLUDING BUT NOT LIMITED TO DIRECT, * INDIRECT, SPECIAL, CONSEQUENTIAL, PUNITIVE, AND EXEMPLARY DAMAGES, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. * * ------------------------------------------------------------------------= */ public class Main{ private static final double GAMMA_COEF[] = { .8571195590989331421920062399942e-2, .4415381324841006757191315771652e-2, .5685043681599363378632664588789e-1, -.4219835396418560501012500186624e-2, .1326808181212460220584006796352e-2, -.1893024529798880432523947023886e-3, .3606925327441245256578082217225e-4, -.6056761904460864218485548290365e-5, .1055829546302283344731823509093e-5, -.1811967365542384048291855891166e-6, .3117724964715322277790254593169e-7, -.5354219639019687140874081024347e-8, .9193275519859588946887786825940e-9, -.1577941280288339761767423273953e-9, .2707980622934954543266540433089e-10, -.4646818653825730144081661058933e-11, .7973350192007419656460767175359e-12, -.1368078209830916025799499172309e-12, .2347319486563800657233471771688e-13, -.4027432614949066932766570534699e-14, .6910051747372100912138336975257e-15, -.1185584500221992907052387126192e-15, .2034148542496373955201026051932e-16, -.3490054341717405849274012949108e-17, .5987993856485305567135051066026e-18, -.1027378057872228074490069778431e-18 }; private static final double R9LGMC_COEF[] = { .166638948045186324720572965082e0, -.138494817606756384073298605914e-4, .981082564692472942615717154749e-8, -.180912947557249419426330626672e-10, .622109804189260522712601554342e-13, -.339961500541772194430333059967e-15, .268318199848269874895753884667e-17 }; final private static double ALNRCS_COEF[] = { .103786935627437698006862677191e1, -.133643015049089180987660415531, .194082491355205633579261993748e-1, -.301075511275357776903765377766e-2, .486946147971548500904563665091e-3, -.810548818931753560668099430086e-4, .137788477995595247829382514961e-4, -.238022108943589702513699929149e-5, .41640416213865183476391859902e-6, -.73595828378075994984266837032e-7, .13117611876241674949152294345e-7, -.235467093177424251366960923302e-8, .425227732760349977756380529626e-9, -.771908941348407968261081074933e-10, .140757464813590699092153564722e-10, -.257690720580246806275370786276e-11, .473424066662944218491543950059e-12, -.872490126747426417453012632927e-13, .161246149027405514657398331191e-13, -.298756520156657730067107924168e-14, .554807012090828879830413216973e-15, -.103246191582715695951413339619e-15, .192502392030498511778785032449e-16, -.359550734652651500111897078443e-17, .672645425378768578921945742268e-18, -.126026241687352192520824256376e-18 }; /** * Returns the logarithm of the Beta function. * * @param a * A double value. * @param b * A double value. * @return The natural logarithm of the Beta function. */ static public double logBeta(double a, double b) { double corr, ans; double p = Math.min(a, b); double q = Math.max(a, b); if (p <= 0.0) { ans = Double.NaN; } else if (p >= 10.0) { // P and Q are large; corr = r9lgmc(p) + r9lgmc(q) - r9lgmc(p + q); double temp = dlnrel(-p / (p + q)); ans = -0.5 * Math.log(q) + 0.918938533204672741780329736406 + corr + (p - 0.5) * Math.log(p / (p + q)) + q * temp; } else if (q >= 10.0) { // P is small, but Q is large corr = MathUtils.r9lgmc(q) - r9lgmc(p + q); // Check from underflow from r9lgmc ans = logGamma(p) + corr + p - p * Math.log(p + q) + (q - 0.5) * dlnrel(-p / (p + q)); } else { // P and Q are small; ans = Math.log(gamma(p) * (gamma(q) / gamma(p + q))); } return ans; } static double r9lgmc(double x) { double ans; if (x < 10.0) { ans = Double.NaN; } else if (x < 9.490626562e+07) { // 9.490626562e+07 = 1/Math.sqrt(EPSILON_SMALL) double y = 10.0 / x; ans = csevl(2.0 * y * y - 1.0, R9LGMC_COEF) / x; } else if (x < 1.39118e+11) { // 1.39118e+11 = exp(min(log(amach(2) / 12.0), -log(12.0 * // amach(1)))); // See A&S 6.1.41 ans = 1.0 / (12.0 * x); } else { ans = 0.0; // underflows } return ans; } private static double dlnrel(double x) { double ans; if (x <= -1.0) { ans = Double.NaN; } else if (Math.abs(x) <= 0.375) { ans = x * (1.0 - x * MathUtils.csevl(x / .375, ALNRCS_COEF)); } else { ans = Math.log(1.0 + x); } return ans; } /** * Returns the logarithm of the Gamma function of a double. * * @param x * A double value. * @return The natural logarithm of the Gamma function of x. If x is a * negative integer, the result is NaN. */ static public double logGamma(double x) { double ans, sinpiy, y; y = Math.abs(x); if (y <= 10) { ans = Math.log(Math.abs(gamma(x))); } else if (x > 0) { // A&S 6.1.40 // 0.9189385332046727 = 0.5*log(2*PI) ans = 0.9189385332046727 + (x - 0.5) * Math.log(x) - x + r9lgmc(y); } else { sinpiy = Math.abs(Math.sin(Math.PI * y)); if (sinpiy == 0 || Math.round(y) == y) { // The argument for the function can not be a negative integer. ans = Double.NaN; } else { ans = 0.22579135264472743236 + (x - 0.5) * Math.log(y) - x - Math.log(sinpiy) - r9lgmc(y); } } return ans; } /** * Returns the Gamma function of a double. * * @param x * A double value. * @return The Gamma function of x. If x is a negative integer, the result * is NaN. */ static public double gamma(double x) { double ans; double y = Math.abs(x); if (y <= 10.0) { /* * Compute gamma(x) for |x|<=10. First reduce the interval and find * gamma(1+y) for 0 <= y < 1. */ int n = (int) x; if (x < 0.0) n--; y = x - n; n--; ans = 0.9375 + csevl(2.0 * y - 1.0, GAMMA_COEF); if (n == 0) { } else if (n < 0) { // Compute gamma(x) for x < 1 n = -n; if (x == 0.0) { ans = Double.NaN; } else if (y < 1.0 / Double.MAX_VALUE) { ans = Double.POSITIVE_INFINITY; } else { double xn = n - 2; if (x < 0.0 && x + xn == 0.0) { ans = Double.NaN; } else { for (int i = 0; i < n; i++) { ans /= x + i; } } } } else { // gamma(x) for x >= 2.0 for (int i = 1; i <= n; i++) { ans *= y + i; } } } else { // gamma(x) for |x| > 10 if (x > 171.614) { ans = Double.POSITIVE_INFINITY; } else if (x < -170.56) { ans = 0.0; // underflows } else { // 0.9189385332046727 = 0.5*log(2*PI) ans = Math.exp((y - 0.5) * Math.log(y) - y + 0.9189385332046727 + r9lgmc(y)); if (x < 0.0) { double sinpiy = Math.sin(Math.PI * y); if (sinpiy == 0 || Math.round(y) == y) { ans = Double.NaN; } else { ans = -Math.PI / (y * sinpiy * ans); } } } } return ans; } static double csevl(double x, double coef[]) { double b0, b1, b2, twox; int i; b1 = 0.0; b0 = 0.0; b2 = 0.0; twox = 2.0 * x; for (i = coef.length - 1; i >= 0; i--) { b2 = b1; b1 = b0; b0 = twox * b1 - b2 + coef[i]; } return 0.5 * (b0 - b2); } /** * Rounds value. * * @param value the number * @param decimalplaces number of decimal places * @return rounded value as string */ static public String round(double value, double decimalplaces) { double mult = Math.pow(10.0, decimalplaces); return String.valueOf(Math.round(value * mult) / mult); } }