Java examples for java.lang:Math Array Function
Returns the covariance between the two arrays of data. See - Mathworld
/*//w w w . jav a2 s .c o m * Java Information Dynamics Toolkit (JIDT) * Copyright (C) 2012, Joseph T. Lizier * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ //package com.java2s; public class Main { /** * <p>Returns the covariance between the two arrays of data.</p> * <p>See - <a href="http://mathworld.wolfram.com/Covariance.html">Mathworld</a> * </p> * * @param x * @param y * @return the covariance */ public static double covariance(double[] x, double[] y) { double c = 0; double meanX = mean(x); double meanY = mean(y); for (int t = 0; t < x.length; t++) { c += (x[t] - meanX) * (y[t] - meanY); } return c / (double) (x.length - 1); // -1 for sample covariance } /** * <p>Returns the covariance between the two arrays of data, with * a given lag between the first and second.</p> * <p>See - <a href="http://mathworld.wolfram.com/Covariance.html">Mathworld</a> * </p> * * @param x time series 1 * @param y time series 2 * @param delay delay >= 0 to compute the covariance across (from first to second time series) * @return the covariance */ public static double covariance(double[] x, double[] y, int delay) { double meanX = 0, meanY = 0; // No error checking if y is same length as x for (int n = 0; n < x.length - delay; n++) { meanX += x[n]; meanY += y[n + delay]; } meanX /= (double) (x.length - delay); meanY /= (double) (x.length - delay); double c = 0; for (int t = 0; t < x.length - delay; t++) { c += (x[t] - meanX) * (y[t + delay] - meanY); } return c / (double) (x.length - delay - 1); // -1 for sample covariance } public static double mean(int[] input) { return sum(input) / (double) input.length; } public static double mean(double[] input) { return sum(input) / (double) input.length; } public static double mean(double[] input, int startIndex, int length) { return sum(input, startIndex, length) / (double) length; } public static double mean(double[][] input) { return sum(input) / (double) (input.length * input[0].length); } /** * Compute the mean along the given column * * @param input * @param column * @return */ public static double mean(double[][] input, int column) { return sum(input, column) / (double) input.length; } public static double sum(double[] input) { double total = 0; for (int i = 0; i < input.length; i++) { total += input[i]; } return total; } public static double sum(double[] input, int startIndex, int length) { double total = 0; for (int i = startIndex; i < startIndex + length; i++) { total += input[i]; } return total; } public static double sum(double[][] input) { double total = 0; for (int i = 0; i < input.length; i++) { for (int j = 0; j < input[i].length; j++) { total += input[i][j]; } } return total; } public static double sum(double[][] input, int column) { double total = 0; for (int i = 0; i < input.length; i++) { total += input[i][column]; } return total; } public static int sum(int[] input) { int total = 0; for (int i = 0; i < input.length; i++) { total += input[i]; } return total; } public static int sum(int[][] input) { int total = 0; for (int i = 0; i < input.length; i++) { for (int j = 0; j < input[i].length; j++) { total += input[i][j]; } } return total; } }