get Damerau Levenshtein Substring Distance - Java java.lang

Java examples for java.lang:String Algorithm

Description

get Damerau Levenshtein Substring Distance

Demo Code


//package com.java2s;

public class Main {
    /**/*  ww  w  . j  a v  a2  s .  c o m*/
     * 
     * @param t string searched 
     * @param s word or phrase, additional characters at the start or end are ignored
     * @return
     */
    private static final double getDamerauLevenshteinSubstringDistance(
            String t, String s) {
        if (s == null || t == null)
            throw new IllegalArgumentException("Strings must not be null");
        if (s.equals(t))
            return 0;

        /*
           The difference between this impl. and the previous is that, rather 
           than creating and retaining a matrix of size s.length()+1 by t.length()+1, 
           we maintain two single-dimensional arrays of length s.length()+1.  The first, d,
           is the 'current working' distance array that maintains the newest distance cost
           counts as we iterate through the characters of String s.  Each time we increment
           the index of String t we are comparing, d is copied to p, the second int[].  Doing so
           allows us to retain the previous cost counts as required by the algorithm (taking 
           the minimum of the cost count to the left, up one, and diagonally up and to the left
           of the current cost count being calculated).  (Note that the arrays aren't really 
           copied anymore, just switched...this is clearly much better than cloning an array 
           or doing a System.arraycopy() each time  through the outer loop.)

           Effectively, the difference between the two implementations is this one does not 
           cause an out of memory condition when calculating the LD over two very large strings.
         */

        int n = s.length(); // length of s
        int m = t.length(); // length of t

        if (n == 0)
            return m;
        if (m == 0)
            return n;

        //        if (n > m) {
        //            // swap the input strings to consume less memory
        //            String tmp = s;
        //            s = t;
        //            t = tmp;
        //            n = m;
        //            m = t.length();
        //        }

        double p[] = new double[n + 1]; //'previous' cost array, horizontally

        double p_p[] = new double[n + 1]; //n-2 cost array for transpositions

        double d[] = new double[n + 1]; // cost array, horizontally

        double addCost = 1.0 / n;//0.5d; // cost
        double removeCost = 1.5d; // cost
        double editCost = 1.5d; // cost

        //      additional caracters at the start have small cost
        int i; // iterates through s
        for (i = 1; i <= n; i++) {
            p[i] = 0.5d + i * addCost;
        }
        double min = p[n];
        for (int j = 1; j <= m; j++) { // iterates through t
            char t_j = t.charAt(j - 1);
            d[0] = j;

            for (i = 1; i <= n; i++) {
                double cost = s.charAt(i - 1) == t_j ? 0 : editCost;
                // minimum of cell to the left+1, to the top+1, diagonally left and up +cost
                if (d[i - 1] + addCost < p[i] + editCost)
                    if (d[i - 1] + 0.5d + addCost < p[i - 1] + cost) {
                        d[i] = d[i - 1] + 0.5d + addCost;
                        //                      addCost=i/n;
                        //                      editCost=1.5d;
                        //                      removeCost=1.5d;
                    } else {
                        d[i] = p[i - 1] + cost;
                        //                      addCost=1.0d;
                        //                      editCost=1.0d;
                        //                      removeCost=1.5d;
                    }
                else if (p[i] + removeCost < p[i - 1] + cost) {
                    d[i] = p[i] + removeCost;
                    //                      addCost=1.0d;
                    //                      editCost=1.5d;
                    //                      removeCost=1.0d;
                } else {
                    d[i] = p[i - 1] + cost;
                    //                      addCost=1.0d;
                    //                      editCost=1.0d;
                    //                      removeCost=1.5d;
                }
                //                d[i] = Math.min(Math.min(d[i-1]+addCost, p[i]+removeCost),  p[i-1]+cost);

                //damerau extension
                if (i > 1 && j > 1 && s.charAt(i - 1) == t.charAt(j - 2)
                        && s.charAt(i - 2) == t_j)
                    d[i] = Math.min(d[i], p_p[i - 2] + cost); // transposition
            }

            // copy current distance counts to 'previous row' distance counts
            double _d[] = p_p; //placeholder to assist in swapping p and d
            p_p = p;
            p = d;
            d = _d;
            min = Math.min(min + 0.9d, p[n]);
        }

        // our last action in the above loop was to switch d and p, so p now 
        // actually has the most recent cost counts
        min = Math.min(min + 0.9d, p[n]);
        for (i = 0; i <= n; ++i)
            min = Math.min(min, p[n - i] + addCost);
        return min;
    }
}

Related Tutorials