Create the geometry of an arrow. - Java java.lang

Java examples for java.lang:Math Geometry

Description

Create the geometry of an arrow.

Demo Code



public class Main{
    /**/*w w w.  j  a v  a 2 s  .  c o  m*/
     * Create the geometry of an arrow. The arrow is positioned at the end (last
     * point) of the specified polyline, as follows:
     *
     * 0,4--, \ --, \ --, \ --, \ --, -------------------------3-----------1 /
     * --' / --' / --' / --' 2--'
     *
     * @param x X coordinates of polyline of where arrow is positioned in the
     * end. Must contain at least two points.
     * @param y Y coordinates of polyline of where arrow is positioned in the
     * end.
     * @param length Length along the main axis from point 1 to the projection
     * of point 0.
     * @param angle Angle between the main axis and the line 1,0 (and 1,2) in
     * radians.
     * @param inset Specification of point 3 [0.0-1.0], 1.0 will put point 3 at
     * distance length from 1, 0.0 will put it at point 1.
     * @return Array of the five coordinates [x,y,...].
     */
    public static int[] createArrow(int[] x, int[] y, double length,
            double angle, double inset) {
        int[] arrow = new int[10];

        int x0 = x[x.length - 1];
        int y0 = y[y.length - 1];

        arrow[2] = x0;
        arrow[3] = y0;

        // Find position of interior of the arrow along the polyline
        int[] pos1 = new int[2];
        GeometryUtils.findPolygonPosition(x, y, length, pos1);

        // Angles
        double dx = x0 - pos1[0];
        double dy = y0 - pos1[1];

        // Polyline angle
        double v = dx == 0.0 ? Math.PI / 2.0 : Math.atan(Math.abs(dy / dx));

        v = dx > 0.0 && dy <= 0.0 ? Math.PI + v
                : dx > 0.0 && dy >= 0.0 ? Math.PI - v : dx <= 0.0
                        && dy < 0.0 ? -v : dx <= 0.0 && dy > 0.0 ? +v : 0.0;

        double v0 = v + angle;
        double v1 = v - angle;

        double edgeLength = length / Math.cos(angle);

        arrow[0] = x0 + (int) Math.round(edgeLength * Math.cos(v0));
        arrow[1] = y0 - (int) Math.round(edgeLength * Math.sin(v0));

        arrow[4] = x0 + (int) Math.round(edgeLength * Math.cos(v1));
        arrow[5] = y0 - (int) Math.round(edgeLength * Math.sin(v1));

        double c1 = inset * length;

        arrow[6] = x0 + (int) Math.round(c1 * Math.cos(v));
        arrow[7] = y0 - (int) Math.round(c1 * Math.sin(v));

        // Close polygon
        arrow[8] = arrow[0];
        arrow[9] = arrow[1];

        return arrow;
    }
    /**
     * Create geometry for an arrow along the specified line and with tip at
     * x1,y1. See general method above.
     *
     * @param x0 X first end point of line.
     * @param y0 Y first end point of line.
     * @param x1 X second end point of line.
     * @param y1 Y second end point of line.
     * @param length Length along the main axis from point 1 to the projection
     * of point 0.
     * @param angle Angle between the main axis and the line 1,0 (and 1.2)
     * @param inset Specification of point 3 [0.0-1.0], 1.0 will put point 3 at
     * distance length from 1, 0.0 will put it at point 1.
     * @return Array of the four coordinates [x,y,...].
     */
    public static int[] createArrow(int x0, int y0, int x1, int y1,
            double length, double angle, double inset) {
        int[] x = { x0, x1 };
        int[] y = { y0, y1 };

        return createArrow(x, y, length, angle, inset);
    }
    /**
     * Return the x,y position at distance "length" into the given polyline.
     *
     * @param x X coordinates of polyline
     * @param y Y coordinates of polyline
     * @param length Requested position
     * @param position Preallocated to int[2]
     * @return True if point is within polyline, false otherwise
     */
    public static boolean findPolygonPosition(int[] x, int[] y,
            double length, int[] position) {
        if (length < 0) {
            return false;
        }

        double accumulatedLength = 0.0;
        for (int i = 1; i < x.length; i++) {
            double legLength = GeometryUtils.length(x[i - 1], y[i - 1],
                    x[i], y[i]);
            if (legLength + accumulatedLength >= length) {
                double part = length - accumulatedLength;
                double fraction = part / legLength;
                position[0] = (int) Math.round(x[i - 1] + fraction
                        * (x[i] - x[i - 1]));
                position[1] = (int) Math.round(y[i - 1] + fraction
                        * (y[i] - y[i - 1]));
                return true;
            }

            accumulatedLength += legLength;
        }

        // Length is longer than polyline
        return false;
    }
    /**
     * Return the length of a vector.
     *
     * @param v Vector to compute length of [x,y,z].
     * @return Length of vector.
     */
    public static double length(double[] v) {
        return Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
    }
    /**
     * Compute distance between two points.
     *
     * @param p0, p1 Points to compute distance between [x,y,z].
     * @return Distance between points.
     */
    public static double length(double[] p0, double[] p1) {
        double[] v = GeometryUtils.createVector(p0, p1);
        return length(v);
    }
    /**
     * Compute the length of the line from (x0,y0) to (x1,y1)
     *
     * @param x0, y0 First line end point.
     * @param x1, y1 Second line end point.
     * @return Length of line from (x0,y0) to (x1,y1).
     */
    public static double length(int x0, int y0, int x1, int y1) {
        return GeometryUtils.length((double) x0, (double) y0, (double) x1,
                (double) y1);
    }
    /**
     * Compute the length of the line from (x0,y0) to (x1,y1)
     *
     * @param x0, y0 First line end point.
     * @param x1, y1 Second line end point.
     * @return Length of line from (x0,y0) to (x1,y1).
     */
    public static double length(double x0, double y0, double x1, double y1) {
        double dx = x1 - x0;
        double dy = y1 - y0;

        return Math.sqrt(dx * dx + dy * dy);
    }
    /**
     * Compute the length of a polyline.
     *
     * @param x, y Arrays of x,y coordinates
     * @param nPoints Number of elements in the above.
     * @param isClosed True if this is a closed polygon, false otherwise
     * @return Length of polyline defined by x, y and nPoints.
     */
    public static double length(int[] x, int[] y, boolean isClosed) {
        double length = 0.0;

        int nPoints = x.length;
        for (int i = 0; i < nPoints - 1; i++) {
            length += GeometryUtils.length(x[i], y[i], x[i + 1], y[i + 1]);
        }

        // Add last leg if this is a polygon
        if (isClosed && nPoints > 1) {
            length += GeometryUtils.length(x[nPoints - 1], y[nPoints - 1],
                    x[0], y[0]);
        }

        return length;
    }
    /**
     * Construct the vector specified by two points.
     *
     * @param p0, p1 Points the construct vector between [x,y,z].
     * @return v Vector from p0 to p1 [x,y,z].
     */
    public static double[] createVector(double[] p0, double[] p1) {
        double v[] = { p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2] };
        return v;
    }
}

Related Tutorials