Java examples for java.lang:Math Operation
Compute the integral root of x to a given scale, x >= 0.
/*/*www. j a v a2 s .com*/ Anders H?fft, note: This class was downloaded as a quick, and temprory, way of getting a BigDecimal ln() method. The code belongs to Cyclos. See comment below: This file is part of Cyclos (www.cyclos.org). A project of the Social Trade Organisation (www.socialtrade.org). Cyclos is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Cyclos is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Cyclos; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //package com.java2s; import java.math.BigDecimal; public class Main { public static void main(String[] argv) throws Exception { BigDecimal x = new BigDecimal("1234"); long index = 2; int scale = 2; System.out.println(intRoot(x, index, scale)); } /** * Compute the integral root of x to a given scale, x >= 0. Use Newton's algorithm. * @param x the value of x * @param index the integral root value * @param scale the desired scale of the result * @return the result value */ public static BigDecimal intRoot(BigDecimal x, final long index, final int scale) { // Check that x >= 0. if (x.signum() < 0) { throw new IllegalArgumentException("x < 0"); } final int sp1 = scale + 1; final BigDecimal n = x; final BigDecimal i = BigDecimal.valueOf(index); final BigDecimal im1 = BigDecimal.valueOf(index - 1); final BigDecimal tolerance = BigDecimal.valueOf(5).movePointLeft( sp1); BigDecimal xPrev; // The initial approximation is x/index. x = x.divide(i, scale, BigDecimal.ROUND_HALF_EVEN); // Loop until the approximations converge // (two successive approximations are equal after rounding). do { // x^(index-1) final BigDecimal xToIm1 = intPower(x, index - 1, sp1); // x^index final BigDecimal xToI = x.multiply(xToIm1).setScale(sp1, BigDecimal.ROUND_HALF_EVEN); // n + (index-1)*(x^index) final BigDecimal numerator = n.add(im1.multiply(xToI)) .setScale(sp1, BigDecimal.ROUND_HALF_EVEN); // (index*(x^(index-1)) final BigDecimal denominator = i.multiply(xToIm1).setScale(sp1, BigDecimal.ROUND_HALF_EVEN); // x = (n + (index-1)*(x^index)) / (index*(x^(index-1))) xPrev = x; x = numerator.divide(denominator, sp1, BigDecimal.ROUND_DOWN); Thread.yield(); } while (x.subtract(xPrev).abs().compareTo(tolerance) > 0); return x; } /** * Compute x^exponent to a given scale. * @param x the value x * @param exponent the exponent value * @param scale the desired scale of the result * @return the result value */ public static BigDecimal intPower(BigDecimal x, long exponent, final int scale) { // If the exponent is negative, compute 1/(x^-exponent). if (exponent < 0) { return BigDecimal.valueOf(1).divide( intPower(x, -exponent, scale), scale, BigDecimal.ROUND_HALF_EVEN); } BigDecimal power = BigDecimal.valueOf(1); // Loop to compute value^exponent. while (exponent > 0) { // Is the rightmost bit a 1? if ((exponent & 1) == 1) { power = power.multiply(x).setScale(scale, BigDecimal.ROUND_HALF_EVEN); } // Square x and shift exponent 1 bit to the right. x = x.multiply(x).setScale(scale, BigDecimal.ROUND_HALF_EVEN); exponent >>= 1; Thread.yield(); } return power; } }