Java examples for Big Data:Hadoop
Use hadoop to do map and reduce
import java.io.IOException; import java.util.ArrayList; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; public class NGram { public static class NGramMap extends Mapper<Object, Text, Text, IntWritable> { private Text word = new Text(); private final static IntWritable one = new IntWritable(1); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); if (line.length() == 0) // for empty line return; // tokenize line = line.trim().toLowerCase().replaceAll("[^a-zA-Z]+", " "); StringTokenizer tokenizer = new StringTokenizer(line); ArrayList<String> list = new ArrayList<String>(); while (tokenizer.hasMoreTokens()) { list.add(tokenizer.nextToken()); }//from ww w. j av a2 s. c o m // map for (int i = 0; i < list.size(); i++) { StringBuilder sb = new StringBuilder(list.get(i)); word.set(sb.toString()); context.write(word, one); for (int j = 1; j < 5 && i + j < list.size(); j++) { sb.append(" "); sb.append(list.get(i + j)); word.set(sb.toString()); context.write(word, one); } } } } public static class NGramReduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); conf.set("mapred.textoutputformat.separator", "\t"); Job job = new Job(conf, "NGram Generation"); job.setJarByClass(NGram.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapperClass(NGramMap.class); job.setReducerClass(NGramReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true); System.out.println("MapReduce job finished."); } }