Java examples for Big Data:apache spark
Stateful Network Word Count via apache spark
import java.util.Arrays; import java.util.List; import java.util.regex.Pattern; import scala.Tuple2; import com.google.common.base.Optional; import com.google.common.collect.Lists; import org.apache.spark.HashPartitioner; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaPairRDD; import org.apache.spark.api.java.StorageLevels; import org.apache.spark.api.java.function.FlatMapFunction; import org.apache.spark.api.java.function.Function2; import org.apache.spark.api.java.function.PairFunction; import org.apache.spark.streaming.Durations; import org.apache.spark.streaming.api.java.JavaDStream; import org.apache.spark.streaming.api.java.JavaPairDStream; import org.apache.spark.streaming.api.java.JavaReceiverInputDStream; import org.apache.spark.streaming.api.java.JavaStreamingContext; public class StatefulNetworkWordCount { private static final Pattern SPACE = Pattern.compile(" "); public static void main(String[] args) { final Function2<List<Integer>, Optional<Integer>, Optional<Integer>> updateFunction = new Function2<List<Integer>, Optional<Integer>, Optional<Integer>>() { @Override/* ww w. ja v a 2s . com*/ public Optional<Integer> call(List<Integer> values, Optional<Integer> state) { Integer newSum = state.or(0); for (Integer value : values) { newSum += value; } return Optional.of(newSum); } }; SparkConf sparkConf = new SparkConf().setAppName( "JavaStatefulNetworkWordCount").setMaster("local[*]"); JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(1)); ssc.checkpoint("."); List<Tuple2<String, Integer>> tuples = Arrays.asList( new Tuple2<String, Integer>("hello", 1), new Tuple2<String, Integer>("world", 1)); JavaPairRDD<String, Integer> initialRDD = ssc.sparkContext() .parallelizePairs(tuples); JavaReceiverInputDStream<String> lines = ssc.socketTextStream( args[0], Integer.parseInt(args[1]), StorageLevels.MEMORY_AND_DISK_SER_2); JavaDStream<String> words = lines .flatMap(new FlatMapFunction<String, String>() { @Override public Iterable<String> call(String x) { return Lists.newArrayList(SPACE.split(x)); } }); JavaPairDStream<String, Integer> wordsDstream = words .mapToPair(new PairFunction<String, String, Integer>() { @Override public Tuple2<String, Integer> call(String s) { return new Tuple2<String, Integer>(s, 1); } }); JavaPairDStream<String, Integer> stateDstream = wordsDstream .updateStateByKey(updateFunction, new HashPartitioner(ssc .sparkContext().defaultParallelism()), initialRDD); stateDstream.print(); ssc.start(); ssc.awaitTermination(); } }