Java examples for Big Data:apache kafka
Simple example on how to read with apache Kafka consumer
import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.java.utils.ParameterTool; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer082; import org.apache.flink.streaming.util.serialization.SimpleStringSchema; import java.util.Properties; /**/* w w w.j a v a 2 s .co m*/ * Simple example on how to read with a Kafka consumer * * Note that the Kafka source is expecting the following parameters to be set * - "bootstrap.servers" (comma separated list of kafka brokers) * - "zookeeper.connect" (comma separated list of zookeeper servers) * - "group.id" the id of the consumer group * - "topic" the name of the topic to read data from. * * You can pass these required parameters using "--bootstrap.servers host:port,host1:port1 --zookeeper.connect host:port --topic testTopic" * * This is a valid input example: * --topic test --bootstrap.servers localhost:9092 --zookeeper.connect localhost:2181 --group.id myGroup * * */ public class ReadFromKafka { public static void main(String[] args) throws Exception { // create execution environment StreamExecutionEnvironment env = StreamExecutionEnvironment .getExecutionEnvironment(); // parse user parameters // ParameterTool parameterTool = ParameterTool.fromArgs(args); // DataStream<String> messageStream = env.addSource(new FlinkKafkaConsumer(parameterTool.getRequired("topic"), new SimpleStringSchema(), parameterTool.getProperties())); Properties properties = new Properties(); properties.setProperty("bootstrap.servers", "node2:9092"); properties.setProperty("zookeeper.connect", "node2:2181"); properties.setProperty("group.id", "1"); DataStream<String> messageStream = env .addSource(new FlinkKafkaConsumer082<>("demo", new SimpleStringSchema(), properties)); //print(); messageStream.print(); System.out.print(messageStream + " Hello\n"); // print() will write the contents of the stream to the TaskManager's standard out stream // the rebelance call is causing a repartitioning of the data so that all machines // see the messages (for example in cases when "num kafka partitions" < "num flink operators" // messageStream.rebalance().map(new MapFunction<String, String>() { // private static final long serialVersionUID = -6867736771747690202L; // @Override // public String map(String value) throws Exception { // return "Kafka and Flink says: " + value; // } // }).print(); env.execute("kafka consumer"); } }