Java examples for Big Data:apache spark
Logistic regression based classification using Machine Learning Library via apache spark
/*//w w w .ja va 2s.c o m * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package eduonix.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkConf; import org.apache.spark.api.java.JavaRDD; import org.apache.spark.api.java.JavaSparkContext; import org.apache.spark.api.java.function.Function; import org.apache.spark.mllib.classification.LogisticRegressionWithSGD; import org.apache.spark.mllib.classification.LogisticRegressionModel; import org.apache.spark.mllib.linalg.Vectors; import org.apache.spark.mllib.regression.LabeledPoint; /** * Logistic regression based classification using ML Lib. */ public final class JavaLR { static class ParsePoint implements Function<String, LabeledPoint> { private static final Pattern COMMA = Pattern.compile(","); private static final Pattern SPACE = Pattern.compile(" "); @Override public LabeledPoint call(String line) { String[] parts = COMMA.split(line); double y = Double.parseDouble(parts[0]); String[] tok = SPACE.split(parts[1]); double[] x = new double[tok.length]; for (int i = 0; i < tok.length; ++i) { x[i] = Double.parseDouble(tok[i]); } return new LabeledPoint(y, Vectors.dense(x)); } } public static void main(String[] args) { if (args.length != 3) { System.err .println("Usage: JavaLR <input_dir> <step_size> <niters>"); System.exit(1); } SparkConf sparkConf = new SparkConf().setAppName("JavaLR"); JavaSparkContext sc = new JavaSparkContext(sparkConf); JavaRDD<String> lines = sc.textFile(args[0]); JavaRDD<LabeledPoint> points = lines.map(new ParsePoint()).cache(); double stepSize = Double.parseDouble(args[1]); int iterations = Integer.parseInt(args[2]); // Another way to configure LogisticRegression // // LogisticRegressionWithSGD lr = new LogisticRegressionWithSGD(); // lr.optimizer().setNumIterations(iterations) // .setStepSize(stepSize) // .setMiniBatchFraction(1.0); // lr.setIntercept(true); // LogisticRegressionModel model = lr.train(points.rdd()); LogisticRegressionModel model = LogisticRegressionWithSGD.train( points.rdd(), iterations, stepSize); System.out.print("Final w: " + model.weights()); sc.stop(); } }