HDFS To Multiple IOs using apache beam - Java Big Data

Java examples for Big Data:HDF

Description

HDFS To Multiple IOs using apache beam

Demo Code

/*/*from  ww w  . ja  va2 s .  c  o  m*/
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.beam.samples.bounded;

import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.Read;
import org.apache.beam.sdk.io.hdfs.HDFSFileSource;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.DefaultValueFactory;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.text.SimpleDateFormat;
import java.util.Date;

public class HDFSToMultipleIOs {

    private static final Logger LOG = LoggerFactory
            .getLogger(HDFSToMultipleIOs.class);

    /**
     * Specific pipeline options.
     */
    private interface Options extends PipelineOptions {
        String GDELT_EVENTS_URL = "http://data.gdeltproject.org/events/";

        @Description("GDELT file date")
        @Default.InstanceFactory(GDELTFileFactory.class)
        String getDate();

        void setDate(String value);

        @Description("Input Path")
        String getInput();

        void setInput(String value);

        @Description("Output Path")
        String getOutput();

        void setOutput(String value);

        @Description("Kafka Bootstrap Servers")
        @Default.String("localhost:9092")
        String getKafkaServer();

        void setKafkaServer(String value);

        @Description("Kafka Topic Name")
        @Default.String("gdelt")
        String getKafkaTopic();

        void setKafkaTopic(String value);

        @Description("JMS server")
        @Default.String("tcp://localhost:61616")
        String getJMSServer();

        void setJMSServer(String value);

        @Description("JMS queue")
        @Default.String("India")
        String getJMSQueue();

        void setJMSQueue(String value);

        @Description("Mongo Uri")
        @Default.String("mongodb://localhost:27017")
        String getMongoUri();

        void setMongoUri(String value);

        @Description("Mongo Database")
        @Default.String("gdelt")
        String getMongoDatabase();

        void setMongoDatabase(String value);

        @Description("Mongo Collection")
        @Default.String("countbylocation")
        String getMongoCollection();

        void setMongoCollection(String value);

        class GDELTFileFactory implements DefaultValueFactory<String> {
            public String create(PipelineOptions options) {
                SimpleDateFormat format = new SimpleDateFormat("yyyyMMdd");
                return format.format(new Date());
            }
        }
    }

    private static String getCountry(String row) {
        String[] fields = row.split("\\t+");
        if (fields.length > 22) {
            if (fields[21].length() > 2) {
                return fields[21].substring(0, 1);
            }
            return fields[21];
        }
        return "NA";
    }

    public static void main(String[] args) throws Exception {
        Options options = PipelineOptionsFactory.fromArgs(args)
                .withValidation().as(Options.class);
        if (options.getInput() == null) {
            options.setInput(Options.GDELT_EVENTS_URL + options.getDate()
                    + ".export.CSV.zip");
        }
        LOG.info(options.toString());

        Pipeline pipeline = Pipeline.create(options);

        PCollection<String> data = pipeline.apply(
                "ReadFromHDFS",
                Read.from(HDFSFileSource.from(options.getInput(),
                        TextInputFormat.class, LongWritable.class,
                        Text.class))).apply("ExtractPayload",
                ParDo.of(new DoFn<KV<LongWritable, Text>, String>() {
                    @ProcessElement
                    public void processElement(ProcessContext c)
                            throws Exception {
                        c.output(c.element().getValue().toString());
                    }
                }));

        // now we connect to the queue and process every event
        //        PCollection<String> data = pipeline
        //            .apply("ReadFromKafka", KafkaIO.read()
        //                .withBootstrapServers(options.getKafkaServer())
        //                .withTopics(Arrays.asList(options.getKafkaTopic()))
        ////                .withConsumerFactoryFn(new ConsumerFactoryFn(topics, 10, numElements)) // 20 partitions
        //                .withKeyCoder(StringUtf8Coder.of())
        //                .withValueCoder(StringUtf8Coder.of())
        ////                .withMaxNumRecords(1000)
        //            )
        //            .apply("ExtractPayload", ParDo.of(new DoFn<KafkaRecord, String>() {
        //                @ProcessElement
        //                public void processElement(ProcessContext c) throws Exception {
        //                    c.output(c.element().getKV().getValue().toString());
        //                }
        //            }));
        //            .apply(ParDo.of(new IngestToKafka.AddTimestampFn()));
        //
        //        PCollection<String> windowedData = data
        //                .apply(Window.<String>into(
        //                        FixedWindows.of(Duration.standardMinutes(240))));
        ////        options.getWindowSize()
        //
        //        windowedData.apply(Trace.Log.<String>print());
        //
        //        // We filter the events for a given country (IN=India) and send them to their given topic
        //        final String country = "IN";
        //        PCollection<String> eventsInIndia =
        //            windowedData.apply("FilterByCountry", Filter.by(new SerializableFunction<String, Boolean>() {
        //                public Boolean apply(String row) {
        //                    return getCountry(row).equals(country);
        //                }
        //            }));
        //
        //        ConnectionFactory connFactory = new ActiveMQConnectionFactory();
        //        eventsInIndia.apply("WriteToJms", JmsIO.write()
        //            .withConnectionFactory(connFactory)
        //            .withQueue("india")
        //        );
        ////        eventsInIndia.apply("WriteEventsInIndia", TextIO.Write.to(options.getOutput() + "india"));
        //
        //        // we count the events per country and register them in Mongo
        //        PCollection<String> windowedCount = windowedData
        //                .apply("ExtractLocation", ParDo.of(new DoFn<String, String>() {
        //                    @ProcessElement
        //                    public void processElement(ProcessContext c) {
        //                        c.output(getCountry(c.element()));
        //                    }
        //                }))
        //                .apply("FilterValidLocations", Filter.by(new SerializableFunction<String, Boolean>() {
        //                    public Boolean apply(String input) {
        //                        return (!input.equals("NA") && !input.startsWith("-") && input.length() == 2);
        //                    }
        //                }))
        ////            ;
        //                .apply("CountByLocation", Count.<String>perElement())
        //                .apply("ConvertToJson", MapElements.via(new SimpleFunction<KV<String, Long>, String>() {
        //                    public String apply(KV<String, Long> input) {
        //                        return "{\"" + input.getKey() + "\": " + input.getValue() + "}";
        //                    }
        //                }));
        //
        //        windowedCount
        //            .apply("WriteToJms", JmsIO.write()
        //                .withConnectionFactory(connFactory)
        //                .withQueue("count")
        //            );

        //        windowedCount
        //            .apply("WriteToMongo",
        //                MongoDbIO.write()
        //                    .withUri(options.getMongoUri())
        //                    .withDatabase(options.getMongoDatabase())
        //                    .withCollection(options.getMongoCollection()));

        //            .apply("ToCassandraRow", ParDo.of(new DoFn<String, CassandraRow>() {
        //                @ProcessElement
        //                public void processElement(ProcessContext c) {
        //                    CassandraRow row = new CassandraRow();
        //                    row.add("name", CassandraColumnDefinition.Type.TEXT, c.element());
        //                    c.output(row);
        //                }
        //            }))
        //            .apply("WriteToCassandra",
        //                    CassandraIO.write()
        //                        .withHosts(new String[] {"localhost"})
        //                        .withKeyspace("gdelt")
        ////                        .withTable("percountry")
        ////                        .withConfig(new HashMap<String, String>())
        ////                        .withColumns("ab")
        //            );

        pipeline.run();
    }

}

Related Tutorials