Generate the official terasort input data set. - Java Big Data

Java examples for Big Data:Hadoop

Description

Generate the official terasort input data set.

Demo Code

/**//from  w  ww . j a v a2 s.co  m
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.hadoop.examples.terasort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableUtils;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.InputFormat;
import org.apache.hadoop.mapred.InputSplit;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.RecordReader;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * Generate the official terasort input data set.
 * The user specifies the number of rows and the output directory and this
 * class runs a map/reduce program to generate the data.
 * The format of the data is:
 * <ul>
 * <li>(10 bytes key) (10 bytes rowid) (78 bytes filler) \r \n
 * <li>The keys are random characters from the set ' ' .. '~'.
 * <li>The rowid is the right justified row id as a int.
 * <li>The filler consists of 7 runs of 10 characters from 'A' to 'Z'.
 * </ul>
 *
 * <p>
 * To run the program: 
 * <b>bin/hadoop jar hadoop-examples-*.jar teragen 10000000000 in-dir</b>
 */
public class TeraGen extends Configured implements Tool {

    /**
     * An input format that assigns ranges of longs to each mapper.
     */
    static class RangeInputFormat implements
            InputFormat<LongWritable, NullWritable> {

        /**
         * An input split consisting of a range on numbers.
         */
        static class RangeInputSplit implements InputSplit {
            long firstRow;
            long rowCount;

            public RangeInputSplit() {
            }

            public RangeInputSplit(long offset, long length) {
                firstRow = offset;
                rowCount = length;
            }

            public long getLength() throws IOException {
                return 0;
            }

            public String[] getLocations() throws IOException {
                return new String[] {};
            }

            public void readFields(DataInput in) throws IOException {
                firstRow = WritableUtils.readVLong(in);
                rowCount = WritableUtils.readVLong(in);
            }

            public void write(DataOutput out) throws IOException {
                WritableUtils.writeVLong(out, firstRow);
                WritableUtils.writeVLong(out, rowCount);
            }
        }

        /**
         * A record reader that will generate a range of numbers.
         */
        static class RangeRecordReader implements
                RecordReader<LongWritable, NullWritable> {
            long startRow;
            long finishedRows;
            long totalRows;

            public RangeRecordReader(RangeInputSplit split) {
                startRow = split.firstRow;
                finishedRows = 0;
                totalRows = split.rowCount;
            }

            public void close() throws IOException {
                // NOTHING
            }

            public LongWritable createKey() {
                return new LongWritable();
            }

            public NullWritable createValue() {
                return NullWritable.get();
            }

            public long getPos() throws IOException {
                return finishedRows;
            }

            public float getProgress() throws IOException {
                return finishedRows / (float) totalRows;
            }

            public boolean next(LongWritable key, NullWritable value) {
                if (finishedRows < totalRows) {
                    key.set(startRow + finishedRows);
                    finishedRows += 1;
                    return true;
                } else {
                    return false;
                }
            }

        }

        public RecordReader<LongWritable, NullWritable> getRecordReader(
                InputSplit split, JobConf job, Reporter reporter)
                throws IOException {
            return new RangeRecordReader((RangeInputSplit) split);
        }

        /**
         * Create the desired number of splits, dividing the number of rows
         * between the mappers.
         */
        public InputSplit[] getSplits(JobConf job, int numSplits) {
            long totalRows = getNumberOfRows(job);
            long rowsPerSplit = totalRows / numSplits;
            System.out.println("Generating " + totalRows + " using "
                    + numSplits + " maps with step of " + rowsPerSplit);
            InputSplit[] splits = new InputSplit[numSplits];
            long currentRow = 0;
            for (int split = 0; split < numSplits - 1; ++split) {
                splits[split] = new RangeInputSplit(currentRow,
                        rowsPerSplit);
                currentRow += rowsPerSplit;
            }
            splits[numSplits - 1] = new RangeInputSplit(currentRow,
                    totalRows - currentRow);
            return splits;
        }

    }

    static long getNumberOfRows(JobConf job) {
        return job.getLong("terasort.num-rows", 0);
    }

    static void setNumberOfRows(JobConf job, long numRows) {
        job.setLong("terasort.num-rows", numRows);
    }

    static class RandomGenerator {
        private long seed = 0;
        private static final long mask32 = (1l << 32) - 1;
        /**
         * The number of iterations separating the precomputed seeds.
         */
        private static final int seedSkip = 128 * 1024 * 1024;
        /**
         * The precomputed seed values after every seedSkip iterations.
         * There should be enough values so that a 2**32 iterations are 
         * covered.
         */
        private static final long[] seeds = new long[] { 0L, 4160749568L,
                4026531840L, 3892314112L, 3758096384L, 3623878656L,
                3489660928L, 3355443200L, 3221225472L, 3087007744L,
                2952790016L, 2818572288L, 2684354560L, 2550136832L,
                2415919104L, 2281701376L, 2147483648L, 2013265920L,
                1879048192L, 1744830464L, 1610612736L, 1476395008L,
                1342177280L, 1207959552L, 1073741824L, 939524096L,
                805306368L, 671088640L, 536870912L, 402653184L, 268435456L,
                134217728L, };

        /**
         * Start the random number generator on the given iteration.
         * @param initalIteration the iteration number to start on
         */
        RandomGenerator(long initalIteration) {
            int baseIndex = (int) ((initalIteration & mask32) / seedSkip);
            seed = seeds[baseIndex];
            for (int i = 0; i < initalIteration % seedSkip; ++i) {
                next();
            }
        }

        RandomGenerator() {
            this(0);
        }

        long next() {
            seed = (seed * 3141592621l + 663896637) & mask32;
            return seed;
        }
    }

    /**
     * The Mapper class that given a row number, will generate the appropriate 
     * output line.
     */
    public static class SortGenMapper extends MapReduceBase implements
            Mapper<LongWritable, NullWritable, Text, Text> {

        private Text key = new Text();
        private Text value = new Text();
        private RandomGenerator rand;
        private byte[] keyBytes = new byte[12];
        private byte[] spaces = "          ".getBytes();
        private byte[][] filler = new byte[26][];
        {
            for (int i = 0; i < 26; ++i) {
                filler[i] = new byte[10];
                for (int j = 0; j < 10; ++j) {
                    filler[i][j] = (byte) ('A' + i);
                }
            }
        }

        /**
         * Add a random key to the text
         * @param rowId
         */
        private void addKey() {
            for (int i = 0; i < 3; i++) {
                long temp = rand.next() / 52;
                keyBytes[3 + 4 * i] = (byte) (' ' + (temp % 95));
                temp /= 95;
                keyBytes[2 + 4 * i] = (byte) (' ' + (temp % 95));
                temp /= 95;
                keyBytes[1 + 4 * i] = (byte) (' ' + (temp % 95));
                temp /= 95;
                keyBytes[4 * i] = (byte) (' ' + (temp % 95));
            }
            key.set(keyBytes, 0, 10);
        }

        /**
         * Add the rowid to the row.
         * @param rowId
         */
        private void addRowId(long rowId) {
            byte[] rowid = Integer.toString((int) rowId).getBytes();
            int padSpace = 10 - rowid.length;
            if (padSpace > 0) {
                value.append(spaces, 0, 10 - rowid.length);
            }
            value.append(rowid, 0, Math.min(rowid.length, 10));
        }

        /**
         * Add the required filler bytes. Each row consists of 7 blocks of
         * 10 characters and 1 block of 8 characters.
         * @param rowId the current row number
         */
        private void addFiller(long rowId) {
            int base = (int) ((rowId * 8) % 26);
            for (int i = 0; i < 7; ++i) {
                value.append(filler[(base + i) % 26], 0, 10);
            }
            value.append(filler[(base + 7) % 26], 0, 8);
        }

        public void map(LongWritable row, NullWritable ignored,
                OutputCollector<Text, Text> output, Reporter reporter)
                throws IOException {
            long rowId = row.get();
            if (rand == null) {
                // we use 3 random numbers per a row
                rand = new RandomGenerator(rowId * 3);
            }
            addKey();
            value.clear();
            addRowId(rowId);
            addFiller(rowId);
            output.collect(key, value);
        }

    }

    /**
     * @param args the cli arguments
     */
    public int run(String[] args) throws IOException {
        JobConf job = (JobConf) getConf();
        setNumberOfRows(job, Long.parseLong(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        job.setJobName("TeraGen");
        job.setJarByClass(TeraGen.class);
        job.setMapperClass(SortGenMapper.class);
        job.setNumReduceTasks(0);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.setInputFormat(RangeInputFormat.class);
        job.setOutputFormat(TeraOutputFormat.class);
        JobClient.runJob(job);
        return 0;
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new JobConf(), new TeraGen(), args);
        System.exit(res);
    }

}

Related Tutorials