Java examples for 2D Graphics:Curve
The Douglas-Peucker algorithm is an algorithm for reducing the number of points in a curve that is approximated by a series of points.
/*/*ww w .j a v a 2s . com*/ * Flingbox - An OpenSource physics sandbox for Google's Android * Copyright (C) 2009 Jon Ander Pe?alba & Endika Guti?rrez * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ import java.util.ArrayList; public class Main{ /** * The Douglas-Peucker algorithm is an algorithm for reducing the number * of points in a curve that is approximated by a series of points. * The end of this function is a good moment to call the GarbageCollector * * @param points Array of the polygon's points * @param epsilon Max distance to ignore a point * @return New array with optimized points */ public static Vector2D[] douglasPeuckerReducer(final Vector2D[] points, final float epsilon) { final int lastPoint = points.length - 1; if (lastPoint < 3 || epsilon <= 0.0f) return points; // No reduction possible final ArrayList<Vector2D> reducedPolygon = new ArrayList<Vector2D>(); reducedPolygon.add(points[0]); // First point will not be include /* Call recursively to algorithm */ douglasPeucker(points, epsilon, 0, lastPoint, reducedPolygon); if (points[0].distanceToPoint(points[lastPoint]) > epsilon) reducedPolygon.add(points[lastPoint]); // Last point neither reducedPolygon.trimToSize(); return (Vector2D[]) reducedPolygon.toArray(new Vector2D[0]); } /** * Recursively Calculation of DouglasPeucker Algorithm */ private static void douglasPeucker(final Vector2D[] points, final float epsilon, final int first, final int last, final ArrayList<Vector2D> resultPoints) { float maxDistance = 0.0f; int maxDistanceIndex = 0; /* Find maximum distance point. */ for (int i = first + 1; i < last; i++) { float distance = distanceFromLineToPoint(points[first], points[last], points[i]); if (distance > maxDistance) { // Store point maxDistance = distance; maxDistanceIndex = i; } } /* If point distance is more than epsilon then split points array in * two parts and iterate for each. */ if (maxDistance > epsilon) { /* Find in previous segment */ if ((maxDistanceIndex - first) > 1) douglasPeucker(points, epsilon, first, maxDistanceIndex, resultPoints); /* Put point in buffer(2 coords) */ resultPoints.add(points[maxDistanceIndex]); /* Continue searching important points */ if ((last - maxDistanceIndex) > 1) douglasPeucker(points, epsilon, maxDistanceIndex, last, resultPoints); } } /** * Computes minimum distance from line to point */ public static float distanceFromLineToPoint(final Vector2D p0, final Vector2D p1, final Vector2D p) { final float area = (p0.i * p1.j + p1.i * p.j + p.i * p0.j - p1.i * p0.j - p.i * p1.j - p0.i * p.j) / 2f; final float base = (float) Math.sqrt((p1.i - p0.i) * (p1.i - p0.i) + (p1.j - p0.j) * (p1.j - p0.j)); return (float) Math.abs(2f * area / base); } }