Java examples for 2D Graphics:Line
Determines the intersection of two lines, if one exists.
public class Main{ /**/*from ww w . ja v a 2s. com*/ * Determines the intersection of two lines, if one exists. * * @param rX1 The first x coord of the ray * @param rY1 The first y coord of the ray * @param rX2 The second x coord of the ray * @param rY2 The second y coord of the ray * @param sX1 The first x coord of line segment * @param sY1 The first y coord of line segment * @param sX2 The second x coord of line segment * @param sY2 The second y coord of line segment * @return The intersection of two lines, if it exists */ public static double[] findRayIntersection(double rx1, double ry1, double rx2, double ry2, double sx1, double sy1, double sx2, double sy2) { double[] point = findIntersectionOfTwoLines(rx1, ry1, rx2, ry2, sx1, sy1, sx2, sy2); point = nullIfOutOfBounds(point, sx1, sy1, sx2, sy2); return nullIfBehind(point, rx1, ry1, rx2, ry2); } public static double[] findIntersectionOfTwoLines(double l1x1, double l1y1, double l1x2, double l1y2, double l2x1, double l2y1, double l2x2, double l2y2) { // Cheating check to make sure the lines do not connect up end to end // This is required because such delicate intersections can be fucked by cumulative floating point error if (l1x1 == l2x1 && l1y1 == l2y1) { return new double[] { l1x1, l1y1 }; } if (l1x1 == l2x2 && l1y1 == l2y2) { return new double[] { l1x1, l1y1 }; } if (l1x2 == l2x1 && l1y2 == l2y1) { return new double[] { l1x2, l1y2 }; } if (l1x2 == l2x2 && l1y2 == l2y2) { return new double[] { l1x2, l1y2 }; } if (l1x1 == l1x2 && l1y1 > l1y2) {// The first line is pointing up if (l2x1 == l2x2) { // The second line is vertical return new double[] { l1x1, Math.max(l2y1, l2y2) }; } else { double intersectY = solveForY(l2x1, l2y1, l2x2, l2y2, l1x1); return new double[] { l1x1, intersectY }; } } if (l1x1 == l1x2 && l1y1 < l1y2) { // The first line is pointing straight down if (l2x1 == l2x2) { // The second line is vertical return new double[] { l1x1, Math.min(l2y1, l2y2) }; } else { double intersectY = solveForY(l2x1, l2y1, l2x2, l2y2, l1x1); return new double[] { l1x1, intersectY }; } } if (l2x1 == l2x2) { // The second line is vertical double yIntersect = solveForY(l1x1, l1y1, l1x2, l1y2, l2x1); return new double[] { l2x1, yIntersect }; } // Here we solve the simultaneous equation to get the intersection double[] firstLine = TrigUtil.getLineEquation(l1x1, l1y1, l1x2, l1y2); double[] secondLine = TrigUtil.getLineEquation(l2x1, l2y1, l2x2, l2y2); double coefficient1 = firstLine[0]; double shift1 = firstLine[1]; double coefficient2 = secondLine[0]; double shift2 = secondLine[1]; double xIntersect = (shift1 - shift2) / (coefficient2 - coefficient1); double yIntersect = solveForY(l2x1, l2y1, l2x2, l2y2, xIntersect); return new double[] { xIntersect, yIntersect }; } /** * Tests whether point lies within the x and y boundaries given. * * @param point The point for bounds testing * @param bX1 The first x coord * @param bY1 The first y coord * @param bX2 The second x coord * @param bY2 The second y coord * @return point if point lies within the boundaries, null otherwise */ private static double[] nullIfOutOfBounds(double[] point, double bX1, double bY1, double bX2, double bY2) { if (point != null && isBetween(point[0], bX1, bX2) && isBetween(point[1], bY1, bY2)) { return point; } else { return null; } } /** * Tests whether point, (x,y), lies backward of the ray which starts at (rX1,rY1) and passes through (rX2,rY2). * This does not test that the point lies along the ray, but simply that if the x component is increasing along * the ray then x must be greater than rX1, otherwise it must be smaller. The same check is done for y. * * @param point The point for bounds testing * @param bX1 The first x coord * @param bY1 The first y coord * @param bX2 The second x coord * @param bY2 The second y coord * @return point if point lies within the boundaries, null otherwise */ private static double[] nullIfBehind(double[] point, double rX1, double rY1, double rX2, double rY2) { if (point == null) { return null; } else if (!(rX1 >= rX2 && point[0] <= rX1) && !(rX1 <= rX2 && point[0] >= rX1)) { return null; } else if (!(rY1 >= rY2 && point[1] <= rY1) && !(rY1 <= rY2 && point[1] >= rY1)) { return null; } else { return point; } } /** * Solves the equation of the line described by the point (x1,y1) and rotation for Y given * the value of x provided. * * If the ray is not solvable for x, the Double.NaN is returned. Since we are solving * for a ray and not a line there are some values of x which do not yield an y value. * * @param rotation the rotation, in radians, clockwise from the pointing up position * @param x1 First x coordinate * @param y1 First y coordinate * @param x The value of x * @return The value of y for this line, given x or Double.Nan if there is no solution */ public static double solveForY(double rotation, double x1, double y1, double x) { if (isBetween(rotation, 0, Math.PI) && x < x1) { // Facing right return Double.NaN; } else if (isBetween(rotation, Math.PI, Math.PI * 2) && x > x1) { // Facing left return Double.NaN; } double[] line = getLineEquation(rotation, x1, y1); double coefficient = line[0]; double shift = line[1]; return (coefficient * x) + shift; } /** * Solves the equation of the line described by the pair of points {(x1,y1),(x2,y2)} for Y given * the value of x provided. * * @param x1 First x coordinate * @param y1 First y coordinate * @param x2 Second x coordinate * @param y2 Second y coordinate * @param x The value of x * @return The value of y for this line, given x */ public static double solveForY(double x1, double y1, double x2, double y2, double x) { double[] line = getLineEquation(x1, y1, x2, y2); double coefficient = line[0]; double shift = line[1]; return (coefficient * x) + shift; } /** * Given two points {(x1,y1),(x2,y2)} returns {m,b} from the equation y = mx + b for a line * which passes through both points. * * @param x1 First x coordinate * @param y1 First y coordinate * @param x2 Second x coordinate * @param y2 Second y coordinate * @return The slope and y intercept of the line passing through the points provided */ public static double[] getLineEquation(double x1, double y1, double x2, double y2) { double coefficient = (y2 - y1) / (x2 - x1); double shift = -(coefficient * x1) + y1; return new double[] { coefficient, shift }; } /** * Given a rotation (in radians) and a single point (x,y) returns {m,b} from the equation y = mx + b * for a line which passes through (x,y) and is oriented by rotation many radians clockwise from the * pointing straight up position. * * @param rotation The rotated orientation of the line from the straight up position * @param x The x coordinate * @param y The y coordinate * @return The slope and y intercept of the line passing through the point provided with the provided rotation */ public static double[] getLineEquation(double rotation, double x, double y) { double coefficient = -(Math.cos(rotation) / Math.sin(rotation)); double shift = -(coefficient * x) + y; return new double[] { coefficient, shift }; } /** * Indicates if the value x is between x1 and x2. * * If x is NaN then I am currently assuming that it will never lie between any * two double values. Surprisingly couldn't easily find a reference to how * weird double comparisons behave in Java :) * * @param x The value for testing * @param x1 First boundary value * @param x2 Second boundary value * @return true if the x is between x1 and x2, false otherwise */ public static boolean isBetween(double x, double x1, double x2) { if (x <= x1 && x >= x2) { return true; } if (x <= x2 && x >= x1) { return true; } return false; } }