Here you can find the source of sinToCos(double angle, double sin)
Parameter | Description |
---|---|
angle | Input angle x |
sin | Sine of x. |
public static double sinToCos(double angle, double sin)
//package com.java2s; /*//from w w w .ja va 2s . com This file is part of ELKI: Environment for Developing KDD-Applications Supported by Index-Structures Copyright (C) 2015 Ludwig-Maximilians-Universit?t M?nchen Lehr- und Forschungseinheit f?r Datenbanksysteme ELKI Development Team This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ public class Main { /** * Two times Pi. */ public static final double TWOPI = 2. * Math.PI; /** * Half the value of Pi. */ public static final double HALFPI = .5 * Math.PI; /** * 1.5 times Pi. */ public static final double ONEHALFPI = 1.5 * Math.PI; /** * <b>Fast</b> way of computing cos(x) from x and sin(x). * * @param angle Input angle x * @param sin Sine of x. * @return Cosine of x */ public static double sinToCos(double angle, double sin) { // Numerics of the formula below aren't too good. if ((-1e-5 < sin && sin < 1e-5) || sin > 0.99999 || sin < -0.99999) { return Math.cos(angle); } angle = normAngle(angle); final double s = Math.sqrt(1 - sin * sin); return (angle < HALFPI || angle > ONEHALFPI) ? s : -s; } /** * Normalize an angle to [0:2pi[ * * @param x Input angle * @return Normalized angle */ public static double normAngle(double x) { x %= TWOPI; return (x > 0) ? x : x + TWOPI; } }