Here you can find the source of quickSort(int[] array, int[] index, int lo0, int hi0)
Parameter | Description |
---|---|
array | the array of integers to be sorted |
index | the index which should contain the positions in the sorted array |
lo0 | the first index of the subset to be sorted |
hi0 | the last index of the subset to be sorted |
private static void quickSort(int[] array, int[] index, int lo0, int hi0)
//package com.java2s; /*//from w w w . java2s.co m * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ public class Main { /** * Implements quicksort for an array of indices. * * @param array the array of integers to be sorted * @param index the index which should contain the positions in the * sorted array * @param lo0 the first index of the subset to be sorted * @param hi0 the last index of the subset to be sorted */ private static void quickSort(int[] array, int[] index, int lo0, int hi0) { int lo = lo0; int hi = hi0; int mid; int help; if (hi0 > lo0) { // Arbitrarily establishing partition element as the midpoint of // the array. mid = array[index[(lo0 + hi0) / 2]]; // loop through the array until indices cross while (lo <= hi) { // find the first element that is greater than or equal to // the partition element starting from the left Index. while ((array[index[lo]] < mid) && (lo < hi0)) { ++lo; } // find an element that is smaller than or equal to // the partition element starting from the right Index. while ((array[index[hi]] > mid) && (hi > lo0)) { --hi; } // if the indexes have not crossed, swap if (lo <= hi) { help = index[lo]; index[lo] = index[hi]; index[hi] = help; ++lo; --hi; } } // If the right index has not reached the left side of array // must now sort the left partition. if (lo0 < hi) { quickSort(array, index, lo0, hi); } // If the left index has not reached the right side of array // must now sort the right partition. if (lo < hi0) { quickSort(array, index, lo, hi0); } } } /** * Implements unsafe quicksort for an array of indices. * * @param array the array of doubles to be sorted * @param index the index which should contain the positions in the * sorted array * @param lo0 the first index of the subset to be sorted * @param hi0 the last index of the subset to be sorted */ private static void quickSort(double[] array, int[] index, int lo0, int hi0) { int lo = lo0; int hi = hi0; double mid; int help; if (hi0 > lo0) { // Arbitrarily establishing partition element as the midpoint of // the array. mid = array[index[(lo0 + hi0) / 2]]; // loop through the array until indices cross while (lo <= hi) { // find the first element that is greater than or equal to // the partition element starting from the left Index. while ((array[index[lo]] < mid) && (lo < hi0)) { ++lo; } // find an element that is smaller than or equal to // the partition element starting from the right Index. while ((array[index[hi]] > mid) && (hi > lo0)) { --hi; } // if the indexes have not crossed, swap if (lo <= hi) { help = index[lo]; index[lo] = index[hi]; index[hi] = help; ++lo; --hi; } } // If the right index has not reached the left side of array // must now sort the left partition. if (lo0 < hi) { quickSort(array, index, lo0, hi); } // If the left index has not reached the right side of array // must now sort the right partition. if (lo < hi0) { quickSort(array, index, lo, hi0); } } } }