Here you can find the source of quickSort( double[] array, int[] index, int left, int right)
Parameter | Description |
---|---|
array | the array of doubles to be sorted |
index | the index into the array of doubles |
left | the first index of the subset to be sorted |
right | the last index of the subset to be sorted |
private static void quickSort( double[] array, int[] index, int left, int right)
//package com.java2s; //License from project: Open Source License public class Main { /**//from w w w.j av a 2s. c om * Implements quicksort according to Manber's "Introduction to * Algorithms". * * @param array the array of doubles to be sorted * @param index the index into the array of doubles * @param left the first index of the subset to be sorted * @param right the last index of the subset to be sorted */ //@ requires 0 <= first && first <= right && right < array.length; //@ requires (\forall int i; 0 <= i && i < index.length; 0 <= index[i] && index[i] < array.length); //@ requires array != index; // assignable index; private static void quickSort(/*@non_null@*/ double[] array, /*@non_null@*/ int[] index, int left, int right) { if (left < right) { int middle = partition(array, index, left, right); quickSort(array, index, left, middle); quickSort(array, index, middle + 1, right); } } /** * Implements quicksort according to Manber's "Introduction to * Algorithms". * * @param array the array of integers to be sorted * @param index the index into the array of integers * @param left the first index of the subset to be sorted * @param right the last index of the subset to be sorted */ //@ requires 0 <= first && first <= right && right < array.length; //@ requires (\forall int i; 0 <= i && i < index.length; 0 <= index[i] && index[i] < array.length); //@ requires array != index; // assignable index; private static void quickSort(/*@non_null@*/ int[] array, /*@non_null@*/ int[] index, int left, int right) { if (left < right) { int middle = partition(array, index, left, right); quickSort(array, index, left, middle); quickSort(array, index, middle + 1, right); } } /** * Partitions the instances around a pivot. Used by quicksort and * kthSmallestValue. * * @param array the array of doubles to be sorted * @param index the index into the array of doubles * @param left the first index of the subset * @param right the last index of the subset * * @return the index of the middle element */ private static int partition(double[] array, int[] index, int l, int r) { double pivot = array[index[(l + r) / 2]]; int help; while (l < r) { while ((array[index[l]] < pivot) && (l < r)) { l++; } while ((array[index[r]] > pivot) && (l < r)) { r--; } if (l < r) { help = index[l]; index[l] = index[r]; index[r] = help; l++; r--; } } if ((l == r) && (array[index[r]] > pivot)) { r--; } return r; } /** * Partitions the instances around a pivot. Used by quicksort and * kthSmallestValue. * * @param array the array of integers to be sorted * @param index the index into the array of integers * @param left the first index of the subset * @param right the last index of the subset * * @return the index of the middle element */ private static int partition(int[] array, int[] index, int l, int r) { double pivot = array[index[(l + r) / 2]]; int help; while (l < r) { while ((array[index[l]] < pivot) && (l < r)) { l++; } while ((array[index[r]] > pivot) && (l < r)) { r--; } if (l < r) { help = index[l]; index[l] = index[r]; index[r] = help; l++; r--; } } if ((l == r) && (array[index[r]] > pivot)) { r--; } return r; } }