Here you can find the source of pow(int base, int exponent)
public static int pow(int base, int exponent)
//package com.java2s; /*/*from w w w .j a v a 2 s . c o m*/ * MathUtil.java * * Copyright (C) 2005-2007 Tommi Laukkanen * http://www.substanceofcode.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ public class Main { /** * Returns the value of the first argument raised to the * power of the second argument. * * @author Mario Sansone */ public static int pow(int base, int exponent) { boolean reciprocal = false; if (exponent < 0) { reciprocal = true; } int result = 1; while (exponent-- > 0) { result *= base; } return reciprocal ? 1 / result : result; } public static double pow(double base, int exponent) { boolean reciprocal = false; if (exponent < 0) { reciprocal = true; } double result = 1; while (exponent-- > 0) { result *= base; } return reciprocal ? 1 / result : result; } /** * Replacement for missing Math.pow(double, double) * @param x * @param y * @return */ public static double pow(double x, double y) { //Convert the real power to a fractional form int den = 1024; //declare the denominator to be 1024 /*Conveniently 2^10=1024, so taking the square root 10 times will yield our estimate for n. In our example n^3=8^2 n^1024 = 8^683.*/ int num = (int) (y * den); // declare numerator int iterations = 10; /*declare the number of square root iterations associated with our denominator, 1024.*/ double n = Double.MAX_VALUE; /* we initialize our estimate, setting it to max*/ while (n >= Double.MAX_VALUE && iterations > 1) { /* We try to set our estimate equal to the right hand side of the equation (e.g., 8^2048). If this number is too large, we will have to rescale. */ n = x; for (int i = 1; i < num; i++) { n *= x; } /*here, we handle the condition where our starting point is too large*/ if (n >= Double.MAX_VALUE) { iterations--; /*reduce the iterations by one*/ den = (int) (den / 2); /*redefine the denominator*/ num = (int) (y * den); //redefine the numerator } } /************************************************* ** We now have an appropriately sized right-hand-side. ** Starting with this estimate for n, we proceed. **************************************************/ for (int i = 0; i < iterations; i++) { n = Math.sqrt(n); } // Return our estimate return n; } }