Here you can find the source of mergeSort(long[] theArray, int nElems)
Parameter | Description |
---|---|
theArray | long[] the Array to sort |
nElems | int size of theArray |
public static void mergeSort(long[] theArray, int nElems)
//package com.java2s; /*********************************************************************** /* w w w .j a v a 2s. co m*/ This file is part of KEEL-software, the Data Mining tool for regression, classification, clustering, pattern mining and so on. Copyright (C) 2004-2010 F. Herrera (herrera@decsai.ugr.es) L. S?nchez (luciano@uniovi.es) J. Alcal?-Fdez (jalcala@decsai.ugr.es) S. Garc?a (sglopez@ujaen.es) A. Fern?ndez (alberto.fernandez@ujaen.es) J. Luengo (julianlm@decsai.ugr.es) This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/ **********************************************************************/ public class Main { /** * Mergesort algorithm for an array of long integers. * @param theArray long[] the Array to sort * @param nElems int size of theArray */ public static void mergeSort(long[] theArray, int nElems) { // provides workspace long[] workSpace = new long[nElems]; recMergeSort(theArray, workSpace, 0, nElems - 1); } /** * Mergesort algorithm for an array of long integers. * @param theArray double[] the Array to sort * @param nElems int size of theArray */ public static void mergeSort(double[] theArray, int nElems) { // provides workspace double[] workSpace = new double[nElems]; recMergeSort(theArray, workSpace, 0, nElems - 1); } static private void recMergeSort(long[] theArray, long[] workSpace, int lowerBound, int upperBound) { if (lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound + upperBound) / 2; // sort low half recMergeSort(theArray, workSpace, lowerBound, mid); // sort high half recMergeSort(theArray, workSpace, mid + 1, upperBound); // merge them merge(theArray, workSpace, lowerBound, mid + 1, upperBound); } // end else } static private void recMergeSort(double[] theArray, double[] workSpace, int lowerBound, int upperBound) { if (lowerBound == upperBound) // if range is 1, return; // no use sorting else { // find midpoint int mid = (lowerBound + upperBound) / 2; // sort low half recMergeSort(theArray, workSpace, lowerBound, mid); // sort high half recMergeSort(theArray, workSpace, mid + 1, upperBound); // merge them merge(theArray, workSpace, lowerBound, mid + 1, upperBound); } // end else } static private void merge(long[] theArray, long[] workSpace, int lowPtr, int highPtr, int upperBound) { int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr - 1; int n = upperBound - lowerBound + 1; // # of items while (lowPtr <= mid && highPtr <= upperBound) if (theArray[lowPtr] < theArray[highPtr]) workSpace[j++] = theArray[lowPtr++]; else workSpace[j++] = theArray[highPtr++]; while (lowPtr <= mid) workSpace[j++] = theArray[lowPtr++]; while (highPtr <= upperBound) workSpace[j++] = theArray[highPtr++]; for (j = 0; j < n; j++) theArray[lowerBound + j] = workSpace[j]; } static private void merge(double[] theArray, double[] workSpace, int lowPtr, int highPtr, int upperBound) { int j = 0; // workspace index int lowerBound = lowPtr; int mid = highPtr - 1; int n = upperBound - lowerBound + 1; // # of items while (lowPtr <= mid && highPtr <= upperBound) if (theArray[lowPtr] < theArray[highPtr]) workSpace[j++] = theArray[lowPtr++]; else workSpace[j++] = theArray[highPtr++]; while (lowPtr <= mid) workSpace[j++] = theArray[lowPtr++]; while (highPtr <= upperBound) workSpace[j++] = theArray[highPtr++]; for (j = 0; j < n; j++) theArray[lowerBound + j] = workSpace[j]; } }