Java Matrix to Vector matrixVectorProductVDw(final double[][] V, final double[] d, final double[] w, final double[] a, int l1, int l2)

Here you can find the source of matrixVectorProductVDw(final double[][] V, final double[] d, final double[] w, final double[] a, int l1, int l2)

Description

Multiplies the matrix V (l1-by-l2) with diagonal matrix D (l2-by-l2) and then with vector w (l2).

License

Open Source License

Parameter

Parameter Description
V a quadratic <tt>l1</tt>-by-<tt>l2</tt> matrix
d the <tt>l2</tt> diagonal entries of a (diagonal) matrix
w a vector of length <tt>l2</tt>
a on return, contains <tt>V*D*w</tt> which is a vector of length <tt>l1</tt>
l1 number of rows of <tt>V</tt>
l2 number of columns of <tt>V</tt>

Declaration

public static void matrixVectorProductVDw(final double[][] V, final double[] d, final double[] w,
        final double[] a, int l1, int l2) 

Method Source Code

//package com.java2s;
//License from project: Open Source License 

public class Main {
    /**//from  w w w  . j  a v a2 s . co  m
     * Multiplies the matrix <tt>V</tt> (l1-by-l2) with diagonal matrix <tt>D</tt> (l2-by-l2) and
     * then with vector <tt>w</tt> (l2). The result is stored in the vector <tt>A</tt> (l1),
     * that is
     * 
     * <pre>
     * A = V * D * w
     * </pre>
     * 
     * If all diagonal entries of <tt>D</tt> are greater than zero, the
     * resulting matrix is also positive definite.
     * <p>
     * Note that this method does no safety checks (null or length).
     * 
     * @param V
     *            a quadratic <tt>l1</tt>-by-<tt>l2</tt> matrix
     * @param d
     *            the <tt>l2</tt> diagonal entries of a (diagonal) matrix
     * @param w
     *            a vector of length <tt>l2</tt>
     * @param a
     *            on return, contains <tt>V*D*w</tt> which is a vector of length <tt>l1</tt>
     * @param l1
     *            number of rows of <tt>V</tt>
     * @param l2
     *            number of columns of <tt>V</tt>
     */
    public static void matrixVectorProductVDw(final double[][] V, final double[] d, final double[] w,
            final double[] a, int l1, int l2) {
        assert hasShape(V, l1, l2);
        assert d != null;
        assert w != null;
        assert a != null;
        assert d.length >= l2;
        assert w.length >= l2;
        assert a.length >= l1;

        for (int i = 0; i < l1; i++) {
            // V D w
            a[i] = V[i][0] * d[0] * w[0];
            for (int j = 1; j < l2; j++) {
                a[i] += V[i][j] * d[j] * w[j];
            }
        }
    }

    /**
     * Returns whether matrix mat has size l1-by-l2 or not 
     * @param mat   a matrix
     * @param l1   first dimension (lines)
     * @param l2   second dimension (columns)
     * @return
     */
    public static boolean hasShape(final double[][] mat, int l1, int l2) {
        assert mat != null;
        assert l1 > 0;
        assert l2 > 0;

        if (mat.length != l1) {
            return false;
        }
        for (int i = 0; i < mat.length; i++) {
            if (mat[i].length != l2) {
                return false;
            }
        }
        return true;
    }

    public static boolean hasShape(final double[][][] mat3d, int l1, int l2, int l3) {
        assert mat3d != null;
        assert l1 > 0;
        assert l2 > 0;
        assert l3 > 0;

        if (mat3d.length != l1) {
            return false;
        }
        for (int i = 0; i < mat3d.length; i++) {
            if (mat3d[i].length != l2) {
                return false;
            }
            for (int j = 0; j < mat3d[i].length; j++) {
                if (mat3d[i][j].length != l3) {
                    return false;
                }
            }
        }
        return true;
    }
}

Related

  1. matrix2Vector(double[][] m)
  2. matrix2vector(int[][] matrix)
  3. matrixToVectorArray(int M, int N, float[][] a, float[] b)
  4. matrixToVectorArray(int M, int N, float[][] a, float[] b)
  5. matrixVector(double[][] w, double[] v)