Here you can find the source of multiplyQuad(final double[][] A, final double[][] B, final double[][] dest, int n)
Parameter | Description |
---|---|
A | a quadratic <tt>n</tt>-by-<tt>n</tt> matrix |
B | a quadratic <tt>n</tt>-by-<tt>n</tt> matrix |
dest | this quadratic <tt>n</tt>-by-<tt>n</tt> matrix holds the product of <tt>A</tt> and <tt>B</tt> on return |
n | size of the arrays to be multiplied |
public static void multiplyQuad(final double[][] A, final double[][] B, final double[][] dest, int n)
//package com.java2s; //License from project: Open Source License public class Main { /**/*from w ww. j av a 2s. c om*/ * Multiplies the quadratic matrix <tt>A</tt> (n-by-n) with the quadratic * matrix <tt>B</tt> (n-by-n). The result is stored in <code>dest</code> * (n-by-n), that is * * <pre> * dest = A * B * </pre> * * Note that this method does no safety checks (null or length). * * @param A * a quadratic <tt>n</tt>-by-<tt>n</tt> matrix * @param B * a quadratic <tt>n</tt>-by-<tt>n</tt> matrix * @param dest * this quadratic <tt>n</tt>-by-<tt>n</tt> matrix holds the * product of <tt>A</tt> and <tt>B</tt> on return * @param n * size of the arrays to be multiplied */ public static void multiplyQuad(final double[][] A, final double[][] B, final double[][] dest, int n) { assert hasShape(A, n, n); assert hasShape(B, n, n); assert hasShape(dest, n, n); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { dest[i][j] = A[i][0] * B[0][j]; for (int k = 1; k < n; k++) { dest[i][j] += A[i][k] * B[k][j]; } } } } /** * Multiplies the quadratic matrix <tt>A</tt> (n-by-n) with column vector * <tt>v</tt> (n-by-1). The result is stored in <code>dest</code> (n-by-1), * that is * * <pre> * dest = A * v * </pre> * * Note that this method does no safety checks (null or length). * * @param A * a quadratic <tt>n</tt>-by-<tt>n</tt> matrix * @param v * a column vector of length <tt>n</tt> * @param dest * this column vector of length <tt>n</tt> hols the product of * <tt>A</tt> and <tt>v</tt> on return * @param n * size of the arrays to be multiplied */ public static void multiplyQuad(final double[][] A, final double[] v, final double[] dest, int n) { assert hasShape(A, n, n); assert v != null; assert dest != null; assert v.length >= n; assert dest.length >= n; for (int i = 0; i < n; i++) { dest[i] = A[i][0] * v[0]; for (int j = 1; j < n; j++) { dest[i] += A[i][j] * v[j]; } } } /** * Multiplies the row vector <tt>v</tt> (1-by-n) with the quadratic matrix * <tt>A</tt> (n-by-n). The result is stored in <code>dest</code> (1-by-n), * that is * * <pre> * dest = v * A * </pre> * * Note that this method does no safety checks (null or length). * * @param vTransposed * a row vector of length <tt>n</tt> * @param A * a quadratic <tt>n</tt>-by-<tt>n</tt> matrix * @param destTransposed * this row vector of length <tt>n</tt> hols the product of * <tt>v</tt> and <tt>A</tt> on return * @param n * size of the arrays to be multiplied */ public static void multiplyQuad(final double[] vTransposed, final double[][] A, final double[] destTransposed, int n) { assert vTransposed != null; assert destTransposed != null; assert vTransposed.length >= n; assert destTransposed.length >= n; assert hasShape(A, n, n); for (int j = 0; j < n; j++) { destTransposed[j] = vTransposed[0] * A[0][j]; for (int i = 1; i < n; i++) { destTransposed[j] += vTransposed[i] * A[i][j]; } } } /** * Returns whether matrix mat has size l1-by-l2 or not * @param mat a matrix * @param l1 first dimension (lines) * @param l2 second dimension (columns) * @return */ public static boolean hasShape(final double[][] mat, int l1, int l2) { assert mat != null; assert l1 > 0; assert l2 > 0; if (mat.length != l1) { return false; } for (int i = 0; i < mat.length; i++) { if (mat[i].length != l2) { return false; } } return true; } public static boolean hasShape(final double[][][] mat3d, int l1, int l2, int l3) { assert mat3d != null; assert l1 > 0; assert l2 > 0; assert l3 > 0; if (mat3d.length != l1) { return false; } for (int i = 0; i < mat3d.length; i++) { if (mat3d[i].length != l2) { return false; } for (int j = 0; j < mat3d[i].length; j++) { if (mat3d[i][j].length != l3) { return false; } } } return true; } }