Here you can find the source of lcm(int a, int b)
Least common multiple.<br> http://en.wikipedia.org/wiki/Least_common_multiple<br> lcm( 6, 9 ) = 18<br> lcm( 4, 9 ) = 36<br> lcm( 0, 9 ) = 0<br> lcm( 0, 0 ) = 0
Parameter | Description |
---|---|
a | first number |
b | second number |
public static int lcm(int a, int b)
//package com.java2s; //License from project: Open Source License public class Main { /**/* w w w.j a va2 s.co m*/ * Least common multiple.<br> * http://en.wikipedia.org/wiki/Least_common_multiple<br> * lcm( 6, 9 ) = 18<br> * lcm( 4, 9 ) = 36<br> * lcm( 0, 9 ) = 0<br> * lcm( 0, 0 ) = 0 * @param a first number * @param b second number * @return least common multiple of a and b */ public static int lcm(int a, int b) { if (a == 0 || b == 0) return 0; return Math.abs(a / gcd(a, b) * b); } /** * Least common multiple.<br> * http://en.wikipedia.org/wiki/Least_common_multiple<br> * lcm( 6, 9 ) = 18<br> * lcm( 4, 9 ) = 36<br> * lcm( 0, 9 ) = 0<br> * lcm( 0, 0 ) = 0 * @param a first number * @param b second number * @return least common multiple of a and b */ public static long lcm(long a, long b) { if (a == 0L || b == 0L) return 0L; return Math.abs(a / gcd(a, b) * b); } /** * Greatest common divisor.<br> * http://en.wikipedia.org/wiki/Greatest_common_divisor<br> * gcd( 6, 9 ) = 3<br> * gcd( 4, 9 ) = 1<br> * gcd( 0, 9 ) = 9 - see: http://math.stackexchange.com/questions/27719/what-is-gcd0-a-where-a-is-a-positive-integer<br> * gcd( 0, 0 ) = 0 - this is the only situation when the result is zero.<br> * gcd( 0, Integer.MIN_VALUE ) = Integer.MIN_VALUE<br> * gcd( Integer.MIN_VALUE, 0 ) = Integer.MIN_VALUE<br> * gcd( Integer.MIN_VALUE, Integer.MIN_VALUE ) = Integer.MIN_VALUE * - these are the only situations when the result is negative, * because abs( Integer.MIN_VALUE ) cannot fit in int.<br> * gcd( a, b ) = gcd( -a, b ) = gcd( a, -b ) = gcd( -a, -b ) = gcd( b, a )<br> * The result is always positive except four exceptional situations described above. * @param a first number * @param b second number * @return greatest common divisor of a and b */ public static int gcd(int a, int b) { if (a == 0) return b < 0 ? -b : b; if (b == 0) return a < 0 ? -a : a; if (a < 0) { // Integer.MIN_VALUE is power of two, so greatest common divisor is lowest set bit of second argument. // See: Integer.lowestOneBit. if (a == Integer.MIN_VALUE) return b & -b; a = -a; } if (b < 0) { if (b == Integer.MIN_VALUE) return a & -a; b = -b; } // Euclidean algorithm. // Binary algorithm seems to be slower on modern computers. // Both algorithms have the same asymptotics. while (b > 0) { int c = a % b; a = b; b = c; } return a; } /** * Greatest common divisor.<br> * http://en.wikipedia.org/wiki/Greatest_common_divisor<br> * gcd( 6, 9 ) = 3<br> * gcd( 4, 9 ) = 1<br> * gcd( 0, 9 ) = 9 - see: http://math.stackexchange.com/questions/27719/what-is-gcd0-a-where-a-is-a-positive-integer<br> * gcd( 0, 0 ) = 0 - this is the only situation when the result is zero.<br> * gcd( 0, Long.MIN_VALUE ) = Long.MIN_VALUE<br> * gcd( Long.MIN_VALUE, 0 ) = Long.MIN_VALUE<br> * gcd( Long.MIN_VALUE, Long.MIN_VALUE ) = Long.MIN_VALUE * - these are the only situations when the result is negative, * because abs( Long.MIN_VALUE ) cannot fit in long.<br> * gcd( a, b ) = gcd( -a, b ) = gcd( a, -b ) = gcd( -a, -b ) = gcd( b, a )<br> * The result is always positive except four exceptional situations described above. * @param a first number * @param b second number * @return greatest common divisor of a and b */ public static long gcd(long a, long b) { if (a == 0L) return b < 0L ? -b : b; if (b == 0L) return a < 0L ? -a : a; if (a < 0L) { // Long.MIN_VALUE is power of two, so greatest common divisor is lowest set bit of second argument. // See: Long.lowestOneBit. if (a == Long.MIN_VALUE) return b & -b; a = -a; } if (b < 0L) { if (b == Long.MIN_VALUE) return a & -a; b = -b; } if (a <= Integer.MAX_VALUE && b <= Integer.MAX_VALUE) { int aa = (int) a; int bb = (int) b; while (bb > 0) { int c = aa % bb; aa = bb; bb = c; } return aa; } while (b > 0L) { long c = a % b; a = b; b = c; } return a; } }