Here you can find the source of directVincenty(Point2D.Double point, double brng, double distance)
Parameter | Description |
---|---|
point | starting point (lat/long in decimal degrees) |
brng | bearing angle from north (decimal degrees) |
distance | distance (meters) |
public static Point2D.Double directVincenty(Point2D.Double point, double brng, double distance)
//package com.java2s; //License from project: Apache License import java.awt.geom.Point2D; public class Main { /**//from w ww . jav a 2s .co m * Calculate a destination point given a start point, a bearing angle and a distance. * <p> * The code employs the Vincenty direct formula from T.Vincenty, "Direct and Inverse Solutions of Geodesics on the Ellipsoid with * application of nested equations", Survey Review, vol XXII no 176, 1975 http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf * <p> * See http://www.movable-type.co.uk/scripts/latlong-vincenty-direct.html for explanation and sample web application. * <p> * @param point starting point (lat/long in decimal degrees) * @param brng bearing angle from north (decimal degrees) * @param distance distance (meters) * @return the destination point (lat/long in decimal degrees) */ public static Point2D.Double directVincenty(Point2D.Double point, double brng, double distance) { // WGS-84 ellipsoid parameters double a = 6378137, b = 6356752.3142, f = 1 / 298.257223563; double s = distance; double alpha1 = brng * Math.PI / 180; double sinAlpha1 = Math.sin(alpha1); double cosAlpha1 = Math.cos(alpha1); double tanU1 = (1 - f) * Math.tan(point.y * Math.PI / 180); double cosU1 = 1 / Math.sqrt((1 + tanU1 * tanU1)), sinU1 = tanU1 * cosU1; double sigma1 = Math.atan2(tanU1, cosAlpha1); double sinAlpha = cosU1 * sinAlpha1; double cosSqAlpha = 1 - sinAlpha * sinAlpha; double uSq = cosSqAlpha * (a * a - b * b) / (b * b); double A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq))); double B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq))); double cos2SigmaM = Double.NaN; double sinSigma = Double.NaN; double cosSigma = Double.NaN; double sigma = s / (b * A), sigmaP = 2 * Math.PI; while (Math.abs(sigma - sigmaP) > 1e-12) { cos2SigmaM = Math.cos(2 * sigma1 + sigma); sinSigma = Math.sin(sigma); cosSigma = Math.cos(sigma); double deltaSigma = B * sinSigma * (cos2SigmaM + B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM) - B / 6 * cos2SigmaM * (-3 + 4 * sinSigma * sinSigma) * (-3 + 4 * cos2SigmaM * cos2SigmaM))); sigmaP = sigma; sigma = s / (b * A) + deltaSigma; } double tmp = sinU1 * sinSigma - cosU1 * cosSigma * cosAlpha1; double lat2 = Math.atan2(sinU1 * cosSigma + cosU1 * sinSigma * cosAlpha1, (1 - f) * Math.sqrt(sinAlpha * sinAlpha + tmp * tmp)); double lambda = Math.atan2(sinSigma * sinAlpha1, cosU1 * cosSigma - sinU1 * sinSigma * cosAlpha1); double C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha)); double L = lambda - (1 - C) * f * sinAlpha * (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * cos2SigmaM * cos2SigmaM))); // var revAz = Math.atan2(sinAlpha, -tmp); // final bearing return new Point2D.Double(point.x + (L * 180 / Math.PI), lat2 * 180 / Math.PI); } }