List of utility methods to do gcd
int | gcd(int m, int n) calculates the greatest common divisor of two numbers if (m % n == 0) return n; return gcd(n, m % n); |
int | GCD(int m, int n) GCD if (m < 0) { m = -m; if (n < 0) { n = -n; if (0 == n) { return m; ... |
int | gcd(int m, int n) Returns the greatest common divisor (GCD) of two integer numbers. if (m == 0 && n == 0) throw new IllegalArgumentException("Illegal call with " + "m = 0 and n = 0."); m = Math.abs(m); n = Math.abs(n); while (m != 0) { int temporary = m; m = n % m; n = temporary; ... |
int | gcd(int n, int m) Find the greatest common divisor of both n and m .
n = Math.abs(n); m = Math.abs(m); if (n == 0 && m == 0) { return 1; if (n == m && n >= 1) { return n; return (m < n) ? gcd(n - m, n) : gcd(n, m - n); |
int | gcd(int n1, int n2) gcd int dividend = 0; int divisor = n1 > n2 ? n1 : n2; int remainder = n1 > n2 ? n2 : n1; while (remainder > 0) { dividend = divisor; divisor = remainder; remainder = dividend % divisor; return divisor; |
int | gcd(int num1, int num2) Returns the greatest common divisor of two integers. if (num1 < 0) num1 = -num1; if (num2 < 0) num2 = -num2; return privGCD(num1, num2); |
int | gcd(int p, int q) Calculates the greatest common divisor by using the Euclidean algorithm. while (q != 0) { int r = q; q = p % q; p = r; return p; |
int | gcd(int p, int q) Computes the Greatest Common Devisor of integers p and q. if (q == 0) { return p; return gcd(q, p % q); |
int | gcd(int u, int v) gcd if (u == 0 || v == 0) return u | v; int shift; for (shift = 0; ((u | v) & 1) == 0; ++shift) { u >>= 1; v >>= 1; while ((u & 1) == 0) ... |
int | gcd(int u, int v) Gets the greatest common divisor of the absolute value of two numbers, using the "binary gcd" method which avoids division and modulo operations. if (u * v == 0) { return (Math.abs(u) + Math.abs(v)); if (u > 0) { u = -u; if (v > 0) { v = -v; ... |