List of utility methods to do Gauss
double | gaussianPDF(double mu, double sigma, double x) gaussian PDF double val_exp = -0.5 * ((x - mu) / sigma) * ((x - mu) / sigma); double val = 1 / sigma * Math.exp(val_exp); return _checkBounded(val); |
double | gaussianWindow(double mean1, double mean2, double std) Evaluate a Gaussian window function with the given mean range and standard deviation. double fraction = (mean2 - mean1) / std; double exponent = -(fraction * fraction) / 2.0; return Math.exp(exponent); |
int | gaussJordanElimination(boolean[][] matrix) same as gaussJordanElimination(boolean[][] matrix, int upToRow, int upToCol) but on full matrix if (matrix == null) { return -1; return gaussJordanElimination(matrix, matrix.length, matrix[0].length); |
double[] | gaussTable(final int steps) Returns an array of gaussian values that add up to 1 for the number of steps Solves the problem of having using an intergral to distribute values final double[] table = new double[steps]; final double step = 1D / steps; double sum = 0; for (int i = 0; i < steps; i++) { sum += gaussian(i * step); for (int i = 0; i < steps; i++) { table[i] = gaussian(i * step) / sum; ... |