Java Euclidean Distance euclideanDistance(double[] data, double[] pattern)

Here you can find the source of euclideanDistance(double[] data, double[] pattern)

Description

euclidean Distance

License

Apache License

Parameter

Parameter Description
data a parameter
pattern a parameter

Declaration

public static double euclideanDistance(double[] data, double[] pattern) 

Method Source Code

//package com.java2s;
/*/*from  w  ww .j av a 2 s  . c  o m*/
 * hoidla: various algorithms for Big Data solutions
 * Author: Pranab Ghosh
 * 
 * Licensed under the Apache License, Version 2.0 (the "License"); you
 * may not use this file except in compliance with the License. You may
 * obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0 
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

public class Main {
    /**
     * @param data
     * @param pattern
     * @return
     */
    public static double euclideanDistance(double[] data, double[] pattern) {
        if (data.length != pattern.length) {
            throw new IllegalArgumentException("data and pattern need to be of same size");
        }
        double dist = 0;
        int i = 0;
        for (double value : data) {
            dist += (value - pattern[i]) * (value - pattern[i]);
            ++i;
        }
        dist = Math.sqrt(dist) / data.length;
        return dist;
    }
}

Related

  1. euclideanDistance(double x1, double y1, double x2, double y2)
  2. euclideanDistance(double x1, double y1, double x2, double y2)
  3. EuclideanDistance(double xSource, double ySource, double xTarget, double yTarget)
  4. euclideanDistance(double[] a, double[] b)
  5. euclideanDistance(double[] coord1, double[] coord2)
  6. euclideanDistance(double[] l1, double[] l2, boolean weighted)
  7. euclideanDistance(double[] p, double[] q)
  8. euclideanDistance(double[] vector)
  9. euclideanDistance(double[] vector1, double[] vector2)