List of utility methods to do Euclidean Distance
double | euclideanDistance(double[] vector1, double[] vector2) Returns Euclidean distance between the two vectors double sum = 0; for (int i = 0; i < vector1.length; i++) { sum += (vector1[i] - vector2[i]) * (vector1[i] - vector2[i]); return Math.sqrt(sum); |
double | euclideanDistance(float[] points, int p1, int p2, boolean isDisp, double width, double height) euclidean Distance float dx = points[p1] - points[p2]; float dy = points[p1 + 1] - points[p2 + 1]; if (isDisp) { dx *= width; dy *= height; return Math.sqrt(dx * dx + dy * dy); |
double | euclideanDistance(int i0, int j0, int i1, int j1) euclidean Distance return Math.sqrt(Math.pow(i0 - i1, 2d) + Math.pow(j0 - j1, 2d));
|
double | euclideanDistance(int startX, int startY, int startZ, int endX, int endY, int endZ) See link below for more information about how this works http://www.policyalmanac.org/games/aStarTutorial.htm Thanks to @Adamki11s, who's source I took inspiration from on how to do this, check out his Bukkit post here: https://bukkit.org/threads/lib-a-pathfinding-algorithm.129786/ double dx = startX - endX; double dy = startY - endY; double dz = startZ - endZ; return Math.sqrt((dx * dx) + (dy * dy) + (dz * dz)); |
double | euclideanDistanceNorm(float[] x, float[] y) euclidean Distance Norm double sumXY2 = 0.0; for (int i = 0, n = x.length; i < n; i++) { if (Float.isNaN(x[i]) || Float.isNaN(y[i])) sumXY2 += 1; else sumXY2 += Math.pow(x[i] - y[i], 2); return Math.sqrt(sumXY2) / Math.sqrt(x.length); ... |
float | euclideanDistanceSq2D(float x1, float y1, float x2, float y2) euclidean Distance Sq D float dx = x1 - x2; float dy = y1 - y2; return dx * dx + dy * dy; |