Java BigInteger is Prime sqrtModPrime(BigInteger rSquare, BigInteger p)

Here you can find the source of sqrtModPrime(BigInteger rSquare, BigInteger p)

Description

sqrt Mod Prime

License

Open Source License

Declaration

public static BigInteger sqrtModPrime(BigInteger rSquare, BigInteger p) 

Method Source Code


//package com.java2s;
/*//from   w  w  w  .j a  v  a 2s  .  c  o  m
 * UniCrypt
 *
 *  UniCrypt(tm) : Cryptographical framework allowing the implementation of cryptographic protocols e.g. e-voting
 *  Copyright (C) 2014 Bern University of Applied Sciences (BFH), Research Institute for
 *  Security in the Information Society (RISIS), E-Voting Group (EVG)
 *  Quellgasse 21, CH-2501 Biel, Switzerland
 *
 *  Licensed under Dual License consisting of:
 *  1. GNU Affero General Public License (AGPL) v3
 *  and
 *  2. Commercial license
 *
 *
 *  1. This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU Affero General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU Affero General Public License for more details.
 *
 *   You should have received a copy of the GNU Affero General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 *
 *  2. Licensees holding valid commercial licenses for UniCrypt may use this file in
 *   accordance with the commercial license agreement provided with the
 *   Software or, alternatively, in accordance with the terms contained in
 *   a written agreement between you and Bern University of Applied Sciences (BFH), Research Institute for
 *   Security in the Information Society (RISIS), E-Voting Group (EVG)
 *   Quellgasse 21, CH-2501 Biel, Switzerland.
 *
 *
 *   For further information contact <e-mail: unicrypt@bfh.ch>
 *
 *
 * Redistributions of files must retain the above copyright notice.
 */

import java.math.BigInteger;

public class Main {
    public static BigInteger sqrtModPrime(BigInteger rSquare, BigInteger p) {
        BigInteger two = new BigInteger("2");
        BigInteger z = two;

        //z which must be a quadratic non-residue mod p.
        while (hasSqrtModPrime(z, p)) {
            z = z.add(BigInteger.ONE);
        }

        if (!hasSqrtModPrime(rSquare, p)) {
            throw new UnknownError("r has no square root");
        } else {
            if (p.mod(new BigInteger("4")).equals(new BigInteger("3"))) {
                return rSquare.modPow(p.add(BigInteger.ONE).divide(new BigInteger("4")), p);
            } else {
                BigInteger pMin1 = p.subtract(BigInteger.ONE); //p-1
                BigInteger s = BigInteger.ONE;
                BigInteger q = pMin1.divide(two);

                //Finding Q
                while (q.mod(two).equals(BigInteger.ZERO)) {
                    q = q.divide(two);
                    s = s.add(BigInteger.ONE);
                }

                BigInteger c = z.modPow(q, p);
                BigInteger r = rSquare.modPow(q.add(BigInteger.ONE).divide(two), p);
                BigInteger t = rSquare.modPow(q, p);
                BigInteger m = s;

                //Loop until t==1
                while (!t.equals(BigInteger.ONE)) {
                    BigInteger i = BigInteger.ZERO;
                    while (!BigInteger.ONE.equals(t.modPow(two.modPow(i, p), p))) {
                        i = i.add(BigInteger.ONE);
                    }

                    BigInteger b = c.modPow(two.modPow(m.subtract(i).subtract(BigInteger.ONE), p), p);
                    r = r.multiply(b).mod(p);
                    t = t.multiply(b.pow(2)).mod(p);
                    c = b.modPow(two, p);
                    m = i;
                }

                if (r.modPow(two, p).equals(rSquare.mod(p))) {
                    return r;
                } else {
                    throw new IllegalArgumentException("Tonnelli fails...");
                }

            }
        }
    }

    public static boolean hasSqrtModPrime(BigInteger r, BigInteger p) {
        BigInteger two = new BigInteger("2");
        return r.modPow(p.subtract(BigInteger.ONE).divide(two), p).equals(BigInteger.ONE);
    }
}

Related

  1. isBigPrime(BigInteger number)
  2. isCoprime(BigInteger a, BigInteger b)
  3. isFermatPrime(BigInteger f)
  4. isPrime(BigInteger value)
  5. primeProcessPart(BigInteger from)