Here you can find the source of DiffieHellman(BigInteger p, BigInteger g, BigInteger x, BigInteger y, BigInteger y_B)
Parameter | Description |
---|---|
p | a parameter |
g | a parameter |
x | a parameter |
y | (can be null if unknown) |
y_B | (can be null if unknown) |
public static BigInteger[] DiffieHellman(BigInteger p, BigInteger g, BigInteger x, BigInteger y, BigInteger y_B)
//package com.java2s; /* Copyright (C) 2013 Marius C. Silaghi Author: Marius Silaghi: msilaghi@fit.edu Florida Tech, Human Decision Support Systems Laboratory // w w w .j a va 2 s. c om This program is free software; you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation; either the current version of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ import java.math.BigInteger; public class Main { /** * * @param p * @param g * @param x * @param y (can be null if unknown) * @param y_B (can be null if unknown) * @return ([y,k] where k is non-null iff y_B is known) */ public static BigInteger[] DiffieHellman(BigInteger p, BigInteger g, BigInteger x, BigInteger y, BigInteger y_B) { if (y == null) y = g.modPow(x, p); BigInteger k = null; if (y_B != null) k = y_B.modPow(x, p); return new BigInteger[] { y, k }; } }