Here you can find the source of sqrt(BigDecimal number)
Parameter | Description |
---|---|
number | the input number. |
public static BigDecimal sqrt(BigDecimal number)
//package com.java2s; //License from project: Open Source License import java.math.BigDecimal; import java.math.BigInteger; import java.math.MathContext; import java.math.RoundingMode; public class Main { public static final BigDecimal TWO = BigDecimal.valueOf(2); /**/*from www .j a va 2 s . c om*/ * Calcualtes the square root of the number. * * @param number the input number. * @return the square root of the input number. */ public static BigDecimal sqrt(BigDecimal number) { int digits; // final precision BigDecimal numberToBeSquareRooted; BigDecimal iteration1; BigDecimal iteration2; BigDecimal temp1 = null; BigDecimal temp2 = null; // temp values int extraPrecision = number.precision(); MathContext mc = new MathContext(extraPrecision, RoundingMode.HALF_UP); numberToBeSquareRooted = number; // bd global variable double num = numberToBeSquareRooted.doubleValue(); // bd to double if (mc.getPrecision() == 0) throw new IllegalArgumentException("\nRoots need a MathContext precision > 0"); if (num < 0.) throw new ArithmeticException("\nCannot calculate the square root of a negative number"); if (num == 0.) return number.round(mc); // return sqrt(0) immediately if (mc.getPrecision() < 50) // small precision is buggy.. extraPrecision += 10; // ..make more precise int startPrecision = 1; // default first precision /* create the initial values for the iteration procedure: * x0: x ~ sqrt(d) * v0: v = 1/(2*x) */ if (num == Double.POSITIVE_INFINITY) // d > 1.7E308 { BigInteger bi = numberToBeSquareRooted.unscaledValue(); int biLen = bi.bitLength(); int biSqrtLen = biLen / 2; // floors it too bi = bi.shiftRight(biSqrtLen); // bad guess sqrt(d) iteration1 = new BigDecimal(bi); // x ~ sqrt(d) MathContext mm = new MathContext(5, RoundingMode.HALF_DOWN); // minimal precision extraPrecision += 10; // make up for it later iteration2 = BigDecimal.ONE.divide(TWO.multiply(iteration1, mm), mm); // v = 1/(2*x) } else // d < 1.7E10^308 (the usual numbers) { double s = Math.sqrt(num); iteration1 = new BigDecimal(s); // x = sqrt(d) iteration2 = new BigDecimal(1. / 2. / s); // v = 1/2/x // works because Double.MIN_VALUE * Double.MAX_VALUE ~ 9E-16, so: v > 0 startPrecision = 64; } digits = mc.getPrecision() + extraPrecision; // global limit for procedure // create initial MathContext(precision, RoundingMode) MathContext n = new MathContext(startPrecision, mc.getRoundingMode()); return sqrtProcedure(n, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // return square root using argument precision } /** * Square root by coupled Newton iteration, sqrtProcedure() is the iteration part I adopted the Algorithm from the * book "Pi-unleashed", so now it looks more natural I give sparse math comments from the book, it assumes argument * mc precision >= 1 * * @param mc * @param digits * @param numberToBeSquareRooted * @param iteration1 * @param iteration2 * @param temp1 * @param temp2 * @return */ private static BigDecimal sqrtProcedure(MathContext mc, int digits, BigDecimal numberToBeSquareRooted, BigDecimal iteration1, BigDecimal iteration2, BigDecimal temp1, BigDecimal temp2) { // next v // g = 1 - 2*x*v temp1 = BigDecimal.ONE.subtract(TWO.multiply(iteration1, mc).multiply(iteration2, mc), mc); iteration2 = iteration2.add(temp1.multiply(iteration2, mc), mc); // v += g*v ~ 1/2/sqrt(d) // next x temp2 = numberToBeSquareRooted.subtract(iteration1.multiply(iteration1, mc), mc); // e = d - x^2 iteration1 = iteration1.add(temp2.multiply(iteration2, mc), mc); // x += e*v ~ sqrt(d) // increase precision int m = mc.getPrecision(); if (m < 2) m++; else m = m * 2 - 1; // next Newton iteration supplies so many exact digits if (m < 2 * digits) // digits limit not yet reached? { mc = new MathContext(m, mc.getRoundingMode()); // apply new precision sqrtProcedure(mc, digits, numberToBeSquareRooted, iteration1, iteration2, temp1, temp2); // next iteration } return iteration1; // returns the iterated square roots } }