List of utility methods to do Array Normalize
double[] | normalizeVoxelDimensions(final double[] voxelDimensions) normalize Voxel Dimensions final double[] normalizedVoxelDimensions = new double[voxelDimensions.length]; double voxelDimensionsMinValue = Double.MAX_VALUE; for (int d = 0; d < normalizedVoxelDimensions.length; d++) voxelDimensionsMinValue = Math.min(voxelDimensions[d], voxelDimensionsMinValue); for (int d = 0; d < normalizedVoxelDimensions.length; d++) normalizedVoxelDimensions[d] = voxelDimensions[d] / voxelDimensionsMinValue; return normalizedVoxelDimensions; |
void | normalizeWith(double[] arr, double v) normalize With for (int i = 0; i < arr.length; i++) { arr[i] /= v; |
double[] | normalizeZscore(double[] x) Calculates x_i = (x_i - mean(x)) / std(x) This function can deal with NaNs double mn = mean(x, 0); double sd = standardDeviation(x, 0); for (int i = 0; i < x.length; i++) if (!Double.isNaN(x[i])) x[i] = (x[i] - mn) / sd; return x; |
void | normBySortedPointersInverse(double[] d, int[] pointers) Example: normBySortedPointers data in arbitrary range, run neuralnet on it, then normBySortedPointersInverse to put neuralnet's output back into that same spread of data but a different permutation of it. double[] inverse = new double[d.length]; for (int i = 0; i < d.length; i++) { inverse[i] = d[pointers[i]]; System.arraycopy(inverse, 0, d, 0, d.length); |
double[] | normData(double[] data) \ingroup isti_utils_public_functions \brief Demeans data in-place. double[] ret = new double[data.length]; double sumData = 0.0; for (int i = 0; i < data.length; i++) sumData += data[i]; final double meanData = sumData / data.length; for (int i = 0; i < data.length; i++) ret[i] = data[i] - meanData; return ret; ... |
double | normII(double[] b) Second norm of vector: sum(abs(vector)) double result = 0; for (int i = 0; i < b.length; i++) { result += Math.abs(b[i]); return result; |
void | normLat(double[] latLng) norm Lat if (latLng[0] > DEG_90_AS_RADS) { latLng[0] = DEG_90_AS_RADS - (latLng[0] - DEG_90_AS_RADS); if (latLng[1] < 0) { latLng[1] = latLng[1] + DEG_180_AS_RADS; } else { latLng[1] = latLng[1] - DEG_180_AS_RADS; } else if (latLng[0] < -DEG_90_AS_RADS) { ... |
void | normLng(double[] latLng) Returns a normalized Lng rectangle shape for the bounding box if (latLng[1] > DEG_180_AS_RADS) { latLng[1] = -1.0 * (DEG_180_AS_RADS - (latLng[1] - DEG_180_AS_RADS)); } else if (latLng[1] < -DEG_180_AS_RADS) { latLng[1] = (latLng[1] + DEG_180_AS_RADS) + DEG_180_AS_RADS; |
float | normOf(float[] vector) norm Of float sum = 0f; for (int i = 0; i < vector.length; i++) { sum += vector[i] * vector[i]; return (float) Math.sqrt(sum); |
float | normSquareVec2(final float[] vec) Return the squared length of a vector, a.k.a the squared norm or squared magnitude return vec[0] * vec[0] + vec[1] * vec[1];
|