Here you can find the source of interpolate(double[] end0, double[] end1, double[] mid)
public static double[] interpolate(double[] end0, double[] end1, double[] mid)
//package com.java2s; /******************************************************************************* * This file is part of logisim-evolution. * * logisim-evolution is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * logisim-evolution is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with logisim-evolution. If not, see <http://www.gnu.org/licenses/>. * * Original code by Carl Burch (http://www.cburch.com), 2011. * Subsequent modifications by :/*from w ww. j a v a 2s . c om*/ * + Haute ?cole Sp?cialis?e Bernoise * http://www.bfh.ch * + Haute ?cole du paysage, d'ing?nierie et d'architecture de Gen?ve * http://hepia.hesge.ch/ * + Haute ?cole d'Ing?nierie et de Gestion du Canton de Vaud * http://www.heig-vd.ch/ * The project is currently maintained by : * + REDS Institute - HEIG-VD * Yverdon-les-Bains, Switzerland * http://reds.heig-vd.ch *******************************************************************************/ public class Main { /** * getBounds and findNearestPoint are based translated from the ActionScript * of Olivier Besson's Bezier class for collision detection. Code from: * http://blog.gludion.com/2009/08/distance-to-quadratic-bezier-curve.html */ // a value we consider "small enough" to equal it to zero: // (this is used for double solutions in 2nd or 3d degree equation) private static final double zeroMax = 0.0000001; public static double[] interpolate(double[] end0, double[] end1, double[] mid) { double dx = mid[0] - end0[0]; double dy = mid[1] - end0[1]; double d0 = Math.sqrt(dx * dx + dy * dy); dx = mid[0] - end1[0]; dy = mid[1] - end1[1]; double d1 = Math.sqrt(dx * dx + dy * dy); if (d0 < zeroMax || d1 < zeroMax) { return new double[] { (end0[0] + end1[0]) / 2, (end0[1] + end1[1]) / 2 }; } double t = d0 / (d0 + d1); double u = 1.0 - t; double t2 = t * t; double u2 = u * u; double den = 2 * t * u; double xNum = mid[0] - u2 * end0[0] - t2 * end1[0]; double yNum = mid[1] - u2 * end0[1] - t2 * end1[1]; return new double[] { xNum / den, yNum / den }; } }