weka.core.Statistics.java Source code

Java tutorial

Introduction

Here is the source code for weka.core.Statistics.java

Source

package weka.core;

/**
 * Class implementing some distributions, tests, etc. The code is mostly adapted
 * from the CERN Jet Java libraries:
 * 
 * Copyright 2001 University of Waikato Copyright 1999 CERN - European
 * Organization for Nuclear Research. Permission to use, copy, modify,
 * distribute and sell this software and its documentation for any purpose is
 * hereby granted without fee, provided that the above copyright notice appear
 * in all copies and that both that copyright notice and this permission notice
 * appear in supporting documentation. CERN and the University of Waikato make
 * no representations about the suitability of this software for any purpose. It
 * is provided "as is" without expressed or implied warranty.
 * 
 * @author peter.gedeck@pharma.Novartis.com
 * @author wolfgang.hoschek@cern.ch
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class Statistics implements RevisionHandler {

    /** Some constants */
    protected static final double MACHEP = 1.11022302462515654042E-16;
    protected static final double MAXLOG = 7.09782712893383996732E2;
    protected static final double MINLOG = -7.451332191019412076235E2;
    protected static final double MAXGAM = 171.624376956302725;
    protected static final double SQTPI = 2.50662827463100050242E0;
    protected static final double SQRTH = 7.07106781186547524401E-1;
    protected static final double LOGPI = 1.14472988584940017414;

    protected static final double big = 4.503599627370496e15;
    protected static final double biginv = 2.22044604925031308085e-16;

    /*************************************************
     * COEFFICIENTS FOR METHOD normalInverse() *
     *************************************************/
    /* approximation for 0 <= |y - 0.5| <= 3/8 */
    protected static final double P0[] = { -5.99633501014107895267E1, 9.80010754185999661536E1,
            -5.66762857469070293439E1, 1.39312609387279679503E1, -1.23916583867381258016E0, };
    protected static final double Q0[] = {
            /* 1.00000000000000000000E0, */
            1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1, -2.25462687854119370527E2,
            2.00260212380060660359E2, -8.20372256168333339912E1, 1.59056225126211695515E1,
            -1.18331621121330003142E0, };

    /*
     * Approximation for interval z = sqrt(-2 log y ) between 2 and 8 i.e., y
     * between exp(-2) = .135 and exp(-32) = 1.27e-14.
     */
    protected static final double P1[] = { 4.05544892305962419923E0, 3.15251094599893866154E1,
            5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0,
            -1.40256079171354495875E-1, -3.50424626827848203418E-2, -8.57456785154685413611E-4, };
    protected static final double Q1[] = {
            /* 1.00000000000000000000E0, */
            1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1,
            2.50464946208309415979E0, -1.42182922854787788574E-1, -3.80806407691578277194E-2,
            -9.33259480895457427372E-4, };

    /*
     * Approximation for interval z = sqrt(-2 log y ) between 8 and 64 i.e., y
     * between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890.
     */
    protected static final double P2[] = { 3.23774891776946035970E0, 6.91522889068984211695E0,
            3.93881025292474443415E0, 1.33303460815807542389E0, 2.01485389549179081538E-1,
            1.23716634817820021358E-2, 3.01581553508235416007E-4, 2.65806974686737550832E-6,
            6.23974539184983293730E-9, };
    protected static final double Q2[] = {
            /* 1.00000000000000000000E0, */
            6.02427039364742014255E0, 3.67983563856160859403E0, 1.37702099489081330271E0, 2.16236993594496635890E-1,
            1.34204006088543189037E-2, 3.28014464682127739104E-4, 2.89247864745380683936E-6,
            6.79019408009981274425E-9, };

    /**
     * Computes standard error for observed values of a binomial random variable.
     * 
     * @param p the probability of success
     * @param n the size of the sample
     * @return the standard error
     */
    public static double binomialStandardError(double p, int n) {

        if (n == 0) {
            return 0;
        }
        return Math.sqrt((p * (1 - p)) / n);
    }

    /**
     * Returns chi-squared probability for given value and degrees of freedom.
     * (The probability that the chi-squared variate will be greater than x for
     * the given degrees of freedom.)
     * 
     * @param x the value
     * @param v the number of degrees of freedom
     * @return the chi-squared probability
     */
    public static double chiSquaredProbability(double x, double v) {

        if (x < 0.0 || v < 1.0) {
            return 0.0;
        }
        return incompleteGammaComplement(v / 2.0, x / 2.0);
    }

    /**
     * Computes probability of F-ratio.
     * 
     * @param F the F-ratio
     * @param df1 the first number of degrees of freedom
     * @param df2 the second number of degrees of freedom
     * @return the probability of the F-ratio.
     */
    public static double FProbability(double F, int df1, int df2) {

        return incompleteBeta(df2 / 2.0, df1 / 2.0, df2 / (df2 + df1 * F));
    }

    /**
     * Returns the area under the Normal (Gaussian) probability density function,
     * integrated from minus infinity to <tt>x</tt> (assumes mean is zero,
     * variance is one).
     * 
     * <pre>
     *                            x
     *                             -
     *                   1        | |          2
     *  normal(x)  = ---------    |    exp( - t /2 ) dt
     *               sqrt(2pi)  | |
     *                           -
     *                          -inf.
     * 
     *             =  ( 1 + erf(z) ) / 2
     *             =  erfc(z) / 2
     * </pre>
     * 
     * where <tt>z = x/sqrt(2)</tt>. Computation is via the functions
     * <tt>errorFunction</tt> and <tt>errorFunctionComplement</tt>.
     * 
     * @param a the z-value
     * @return the probability of the z value according to the normal pdf
     */
    public static double normalProbability(double a) {

        double x, y, z;

        x = a * SQRTH;
        z = Math.abs(x);

        if (z < SQRTH) {
            y = 0.5 + 0.5 * errorFunction(x);
        } else {
            y = 0.5 * errorFunctionComplemented(z);
            if (x > 0) {
                y = 1.0 - y;
            }
        }
        return y;
    }

    /**
     * Returns the value, <tt>x</tt>, for which the area under the Normal
     * (Gaussian) probability density function (integrated from minus infinity to
     * <tt>x</tt>) is equal to the argument <tt>y</tt> (assumes mean is zero,
     * variance is one).
     * <p>
     * For small arguments <tt>0 < y < exp(-2)</tt>, the program computes
     * <tt>z = sqrt( -2.0 * log(y) )</tt>; then the approximation is
     * <tt>x = z - log(z)/z  - (1/z) P(1/z) / Q(1/z)</tt>. There are two rational
     * functions P/Q, one for <tt>0 < y < exp(-32)</tt> and the other for
     * <tt>y</tt> up to <tt>exp(-2)</tt>. For larger arguments,
     * <tt>w = y - 0.5</tt>, and <tt>x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2))</tt>.
     * 
     * @param y0 the area under the normal pdf
     * @return the z-value
     */
    public static double normalInverse(double y0) {

        double x, y, z, y2, x0, x1;
        int code;

        final double s2pi = Math.sqrt(2.0 * Math.PI);

        if (y0 <= 0.0) {
            throw new IllegalArgumentException();
        }
        if (y0 >= 1.0) {
            throw new IllegalArgumentException();
        }
        code = 1;
        y = y0;
        if (y > (1.0 - 0.13533528323661269189)) { /* 0.135... = exp(-2) */
            y = 1.0 - y;
            code = 0;
        }

        if (y > 0.13533528323661269189) {
            y = y - 0.5;
            y2 = y * y;
            x = y + y * (y2 * polevl(y2, P0, 4) / p1evl(y2, Q0, 8));
            x = x * s2pi;
            return (x);
        }

        x = Math.sqrt(-2.0 * Math.log(y));
        x0 = x - Math.log(x) / x;

        z = 1.0 / x;
        if (x < 8.0) {
            x1 = z * polevl(z, P1, 8) / p1evl(z, Q1, 8);
        } else {
            x1 = z * polevl(z, P2, 8) / p1evl(z, Q2, 8);
        }
        x = x0 - x1;
        if (code != 0) {
            x = -x;
        }
        return (x);
    }

    /**
     * Returns natural logarithm of gamma function.
     * 
     * @param x the value
     * @return natural logarithm of gamma function
     */
    public static double lnGamma(double x) {

        double p, q, w, z;

        double A[] = { 8.11614167470508450300E-4, -5.95061904284301438324E-4, 7.93650340457716943945E-4,
                -2.77777777730099687205E-3, 8.33333333333331927722E-2 };
        double B[] = { -1.37825152569120859100E3, -3.88016315134637840924E4, -3.31612992738871184744E5,
                -1.16237097492762307383E6, -1.72173700820839662146E6, -8.53555664245765465627E5 };
        double C[] = {
                /* 1.00000000000000000000E0, */
                -3.51815701436523470549E2, -1.70642106651881159223E4, -2.20528590553854454839E5,
                -1.13933444367982507207E6, -2.53252307177582951285E6, -2.01889141433532773231E6 };

        if (x < -34.0) {
            q = -x;
            w = lnGamma(q);
            p = Math.floor(q);
            if (p == q) {
                throw new ArithmeticException("lnGamma: Overflow");
            }
            z = q - p;
            if (z > 0.5) {
                p += 1.0;
                z = p - q;
            }
            z = q * Math.sin(Math.PI * z);
            if (z == 0.0) {
                throw new ArithmeticException("lnGamma: Overflow");
            }
            z = LOGPI - Math.log(z) - w;
            return z;
        }

        if (x < 13.0) {
            z = 1.0;
            while (x >= 3.0) {
                x -= 1.0;
                z *= x;
            }
            while (x < 2.0) {
                if (x == 0.0) {
                    throw new ArithmeticException("lnGamma: Overflow");
                }
                z /= x;
                x += 1.0;
            }
            if (z < 0.0) {
                z = -z;
            }
            if (x == 2.0) {
                return Math.log(z);
            }
            x -= 2.0;
            p = x * polevl(x, B, 5) / p1evl(x, C, 6);
            return (Math.log(z) + p);
        }

        if (x > 2.556348e305) {
            throw new ArithmeticException("lnGamma: Overflow");
        }

        q = (x - 0.5) * Math.log(x) - x + 0.91893853320467274178;

        if (x > 1.0e8) {
            return (q);
        }

        p = 1.0 / (x * x);
        if (x >= 1000.0) {
            q += ((7.9365079365079365079365e-4 * p - 2.7777777777777777777778e-3) * p + 0.0833333333333333333333)
                    / x;
        } else {
            q += polevl(p, A, 4) / x;
        }
        return q;
    }

    /**
     * Returns the error function of the normal distribution. The integral is
     * 
     * <pre>
     *                           x 
     *                            -
     *                 2         | |          2
     *   erf(x)  =  --------     |    exp( - t  ) dt.
     *              sqrt(pi)   | |
     *                          -
     *                           0
     * </pre>
     * 
     * <b>Implementation:</b> For
     * <tt>0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2)</tt>; otherwise
     * <tt>erf(x) = 1 - erfc(x)</tt>.
     * <p>
     * Code adapted from the <A
     * HREF="http://www.sci.usq.edu.au/staff/leighb/graph/Top.html"> Java 2D Graph
     * Package 2.4</A>, which in turn is a port from the <A
     * HREF="http://people.ne.mediaone.net/moshier/index.html#Cephes">Cephes
     * 2.2</A> Math Library (C).
     * 
     * @param a the argument to the function.
     */
    public static double errorFunction(double x) {
        double y, z;
        final double T[] = { 9.60497373987051638749E0, 9.00260197203842689217E1, 2.23200534594684319226E3,
                7.00332514112805075473E3, 5.55923013010394962768E4 };
        final double U[] = {
                // 1.00000000000000000000E0,
                3.35617141647503099647E1, 5.21357949780152679795E2, 4.59432382970980127987E3,
                2.26290000613890934246E4, 4.92673942608635921086E4 };

        if (Math.abs(x) > 1.0) {
            return (1.0 - errorFunctionComplemented(x));
        }
        z = x * x;
        y = x * polevl(z, T, 4) / p1evl(z, U, 5);
        return y;
    }

    /**
     * Returns the complementary Error function of the normal distribution.
     * 
     * <pre>
     *  1 - erf(x) =
     * 
     *                           inf. 
     *                             -
     *                  2         | |          2
     *   erfc(x)  =  --------     |    exp( - t  ) dt
     *               sqrt(pi)   | |
     *                           -
     *                            x
     * </pre>
     * 
     * <b>Implementation:</b> For small x, <tt>erfc(x) = 1 - erf(x)</tt>;
     * otherwise rational approximations are computed.
     * <p>
     * Code adapted from the <A
     * HREF="http://www.sci.usq.edu.au/staff/leighb/graph/Top.html"> Java 2D Graph
     * Package 2.4</A>, which in turn is a port from the <A
     * HREF="http://people.ne.mediaone.net/moshier/index.html#Cephes">Cephes
     * 2.2</A> Math Library (C).
     * 
     * @param a the argument to the function.
     */
    public static double errorFunctionComplemented(double a) {
        double x, y, z, p, q;

        double P[] = { 2.46196981473530512524E-10, 5.64189564831068821977E-1, 7.46321056442269912687E0,
                4.86371970985681366614E1, 1.96520832956077098242E2, 5.26445194995477358631E2,
                9.34528527171957607540E2, 1.02755188689515710272E3, 5.57535335369399327526E2 };
        double Q[] = {
                // 1.0
                1.32281951154744992508E1, 8.67072140885989742329E1, 3.54937778887819891062E2,
                9.75708501743205489753E2, 1.82390916687909736289E3, 2.24633760818710981792E3,
                1.65666309194161350182E3, 5.57535340817727675546E2 };

        double R[] = { 5.64189583547755073984E-1, 1.27536670759978104416E0, 5.01905042251180477414E0,
                6.16021097993053585195E0, 7.40974269950448939160E0, 2.97886665372100240670E0 };
        double S[] = {
                // 1.00000000000000000000E0,
                2.26052863220117276590E0, 9.39603524938001434673E0, 1.20489539808096656605E1,
                1.70814450747565897222E1, 9.60896809063285878198E0, 3.36907645100081516050E0 };

        if (a < 0.0) {
            x = -a;
        } else {
            x = a;
        }

        if (x < 1.0) {
            return 1.0 - errorFunction(a);
        }

        z = -a * a;

        if (z < -MAXLOG) {
            if (a < 0) {
                return (2.0);
            } else {
                return (0.0);
            }
        }

        z = Math.exp(z);

        if (x < 8.0) {
            p = polevl(x, P, 8);
            q = p1evl(x, Q, 8);
        } else {
            p = polevl(x, R, 5);
            q = p1evl(x, S, 6);
        }

        y = (z * p) / q;

        if (a < 0) {
            y = 2.0 - y;
        }

        if (y == 0.0) {
            if (a < 0) {
                return 2.0;
            } else {
                return (0.0);
            }
        }
        return y;
    }

    /**
     * Evaluates the given polynomial of degree <tt>N</tt> at <tt>x</tt>.
     * Evaluates polynomial when coefficient of N is 1.0. Otherwise same as
     * <tt>polevl()</tt>.
     * 
     * <pre>
     *                     2          N
     * y  =  C  + C x + C x  +...+ C x
     *        0    1     2          N
     * 
     * Coefficients are stored in reverse order:
     * 
     * coef[0] = C  , ..., coef[N] = C  .
     *            N                   0
     * </pre>
     * 
     * The function <tt>p1evl()</tt> assumes that <tt>coef[N] = 1.0</tt> and is
     * omitted from the array. Its calling arguments are otherwise the same as
     * <tt>polevl()</tt>.
     * <p>
     * In the interest of speed, there are no checks for out of bounds arithmetic.
     * 
     * @param x argument to the polynomial.
     * @param coef the coefficients of the polynomial.
     * @param N the degree of the polynomial.
     */
    public static double p1evl(double x, double coef[], int N) {

        double ans;
        ans = x + coef[0];

        for (int i = 1; i < N; i++) {
            ans = ans * x + coef[i];
        }

        return ans;
    }

    /**
     * Evaluates the given polynomial of degree <tt>N</tt> at <tt>x</tt>.
     * 
     * <pre>
     *                     2          N
     * y  =  C  + C x + C x  +...+ C x
     *        0    1     2          N
     * 
     * Coefficients are stored in reverse order:
     * 
     * coef[0] = C  , ..., coef[N] = C  .
     *            N                   0
     * </pre>
     * 
     * In the interest of speed, there are no checks for out of bounds arithmetic.
     * 
     * @param x argument to the polynomial.
     * @param coef the coefficients of the polynomial.
     * @param N the degree of the polynomial.
     */
    public static double polevl(double x, double coef[], int N) {

        double ans;
        ans = coef[0];

        for (int i = 1; i <= N; i++) {
            ans = ans * x + coef[i];
        }

        return ans;
    }

    /**
     * Returns the Incomplete Gamma function.
     * 
     * @param a the parameter of the gamma distribution.
     * @param x the integration end point.
     */
    public static double incompleteGamma(double a, double x) {

        double ans, ax, c, r;

        if (x <= 0 || a <= 0) {
            return 0.0;
        }

        if (x > 1.0 && x > a) {
            return 1.0 - incompleteGammaComplement(a, x);
        }

        /* Compute x**a * exp(-x) / gamma(a) */
        ax = a * Math.log(x) - x - lnGamma(a);
        if (ax < -MAXLOG) {
            return (0.0);
        }

        ax = Math.exp(ax);

        /* power series */
        r = a;
        c = 1.0;
        ans = 1.0;

        do {
            r += 1.0;
            c *= x / r;
            ans += c;
        } while (c / ans > MACHEP);

        return (ans * ax / a);
    }

    /**
     * Returns the Complemented Incomplete Gamma function.
     * 
     * @param a the parameter of the gamma distribution.
     * @param x the integration start point.
     */
    public static double incompleteGammaComplement(double a, double x) {

        double ans, ax, c, yc, r, t, y, z;
        double pk, pkm1, pkm2, qk, qkm1, qkm2;

        if (x <= 0 || a <= 0) {
            return 1.0;
        }

        if (x < 1.0 || x < a) {
            return 1.0 - incompleteGamma(a, x);
        }

        ax = a * Math.log(x) - x - lnGamma(a);
        if (ax < -MAXLOG) {
            return 0.0;
        }

        ax = Math.exp(ax);

        /* continued fraction */
        y = 1.0 - a;
        z = x + y + 1.0;
        c = 0.0;
        pkm2 = 1.0;
        qkm2 = x;
        pkm1 = x + 1.0;
        qkm1 = z * x;
        ans = pkm1 / qkm1;

        do {
            c += 1.0;
            y += 1.0;
            z += 2.0;
            yc = y * c;
            pk = pkm1 * z - pkm2 * yc;
            qk = qkm1 * z - qkm2 * yc;
            if (qk != 0) {
                r = pk / qk;
                t = Math.abs((ans - r) / r);
                ans = r;
            } else {
                t = 1.0;
            }

            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;
            if (Math.abs(pk) > big) {
                pkm2 *= biginv;
                pkm1 *= biginv;
                qkm2 *= biginv;
                qkm1 *= biginv;
            }
        } while (t > MACHEP);

        return ans * ax;
    }

    /**
     * Returns the Gamma function of the argument.
     */
    public static double gamma(double x) {

        double P[] = { 1.60119522476751861407E-4, 1.19135147006586384913E-3, 1.04213797561761569935E-2,
                4.76367800457137231464E-2, 2.07448227648435975150E-1, 4.94214826801497100753E-1,
                9.99999999999999996796E-1 };
        double Q[] = { -2.31581873324120129819E-5, 5.39605580493303397842E-4, -4.45641913851797240494E-3,
                1.18139785222060435552E-2, 3.58236398605498653373E-2, -2.34591795718243348568E-1,
                7.14304917030273074085E-2, 1.00000000000000000320E0 };

        double p, z;
        double q = Math.abs(x);

        if (q > 33.0) {
            if (x < 0.0) {
                p = Math.floor(q);
                if (p == q) {
                    throw new ArithmeticException("gamma: overflow");
                }
                z = q - p;
                if (z > 0.5) {
                    p += 1.0;
                    z = q - p;
                }
                z = q * Math.sin(Math.PI * z);
                if (z == 0.0) {
                    throw new ArithmeticException("gamma: overflow");
                }
                z = Math.abs(z);
                z = Math.PI / (z * stirlingFormula(q));

                return -z;
            } else {
                return stirlingFormula(x);
            }
        }

        z = 1.0;
        while (x >= 3.0) {
            x -= 1.0;
            z *= x;
        }

        while (x < 0.0) {
            if (x == 0.0) {
                throw new ArithmeticException("gamma: singular");
            } else if (x > -1.E-9) {
                return (z / ((1.0 + 0.5772156649015329 * x) * x));
            }
            z /= x;
            x += 1.0;
        }

        while (x < 2.0) {
            if (x == 0.0) {
                throw new ArithmeticException("gamma: singular");
            } else if (x < 1.e-9) {
                return (z / ((1.0 + 0.5772156649015329 * x) * x));
            }
            z /= x;
            x += 1.0;
        }

        if ((x == 2.0) || (x == 3.0)) {
            return z;
        }

        x -= 2.0;
        p = polevl(x, P, 6);
        q = polevl(x, Q, 7);
        return z * p / q;
    }

    /**
     * Returns the Gamma function computed by Stirling's formula. The polynomial
     * STIR is valid for 33 <= x <= 172.
     */
    public static double stirlingFormula(double x) {

        double STIR[] = { 7.87311395793093628397E-4, -2.29549961613378126380E-4, -2.68132617805781232825E-3,
                3.47222221605458667310E-3, 8.33333333333482257126E-2, };
        double MAXSTIR = 143.01608;

        double w = 1.0 / x;
        double y = Math.exp(x);

        w = 1.0 + w * polevl(w, STIR, 4);

        if (x > MAXSTIR) {
            /* Avoid overflow in Math.pow() */
            double v = Math.pow(x, 0.5 * x - 0.25);
            y = v * (v / y);
        } else {
            y = Math.pow(x, x - 0.5) / y;
        }
        y = SQTPI * y * w;
        return y;
    }

    /**
     * Returns the Incomplete Beta Function evaluated from zero to <tt>xx</tt>.
     * 
     * @param aa the alpha parameter of the beta distribution.
     * @param bb the beta parameter of the beta distribution.
     * @param xx the integration end point.
     */
    public static double incompleteBeta(double aa, double bb, double xx) {

        double a, b, t, x, xc, w, y;
        boolean flag;

        if (aa <= 0.0 || bb <= 0.0) {
            throw new ArithmeticException("ibeta: Domain error!");
        }

        if ((xx <= 0.0) || (xx >= 1.0)) {
            if (xx == 0.0) {
                return 0.0;
            }
            if (xx == 1.0) {
                return 1.0;
            }
            throw new ArithmeticException("ibeta: Domain error!");
        }

        flag = false;
        if ((bb * xx) <= 1.0 && xx <= 0.95) {
            t = powerSeries(aa, bb, xx);
            return t;
        }

        w = 1.0 - xx;

        /* Reverse a and b if x is greater than the mean. */
        if (xx > (aa / (aa + bb))) {
            flag = true;
            a = bb;
            b = aa;
            xc = xx;
            x = w;
        } else {
            a = aa;
            b = bb;
            xc = w;
            x = xx;
        }

        if (flag && (b * x) <= 1.0 && x <= 0.95) {
            t = powerSeries(a, b, x);
            if (t <= MACHEP) {
                t = 1.0 - MACHEP;
            } else {
                t = 1.0 - t;
            }
            return t;
        }

        /* Choose expansion for better convergence. */
        y = x * (a + b - 2.0) - (a - 1.0);
        if (y < 0.0) {
            w = incompleteBetaFraction1(a, b, x);
        } else {
            w = incompleteBetaFraction2(a, b, x) / xc;
        }

        /*
         * Multiply w by the factor a b _ _ _ x (1-x) | (a+b) / ( a | (a) | (b) ) .
         */

        y = a * Math.log(x);
        t = b * Math.log(xc);
        if ((a + b) < MAXGAM && Math.abs(y) < MAXLOG && Math.abs(t) < MAXLOG) {
            t = Math.pow(xc, b);
            t *= Math.pow(x, a);
            t /= a;
            t *= w;
            t *= gamma(a + b) / (gamma(a) * gamma(b));
            if (flag) {
                if (t <= MACHEP) {
                    t = 1.0 - MACHEP;
                } else {
                    t = 1.0 - t;
                }
            }
            return t;
        }
        /* Resort to logarithms. */
        y += t + lnGamma(a + b) - lnGamma(a) - lnGamma(b);
        y += Math.log(w / a);
        if (y < MINLOG) {
            t = 0.0;
        } else {
            t = Math.exp(y);
        }

        if (flag) {
            if (t <= MACHEP) {
                t = 1.0 - MACHEP;
            } else {
                t = 1.0 - t;
            }
        }
        return t;
    }

    /**
     * Continued fraction expansion #1 for incomplete beta integral.
     */
    public static double incompleteBetaFraction1(double a, double b, double x) {

        double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
        double k1, k2, k3, k4, k5, k6, k7, k8;
        double r, t, ans, thresh;
        int n;

        k1 = a;
        k2 = a + b;
        k3 = a;
        k4 = a + 1.0;
        k5 = 1.0;
        k6 = b - 1.0;
        k7 = k4;
        k8 = a + 2.0;

        pkm2 = 0.0;
        qkm2 = 1.0;
        pkm1 = 1.0;
        qkm1 = 1.0;
        ans = 1.0;
        r = 1.0;
        n = 0;
        thresh = 3.0 * MACHEP;
        do {
            xk = -(x * k1 * k2) / (k3 * k4);
            pk = pkm1 + pkm2 * xk;
            qk = qkm1 + qkm2 * xk;
            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;

            xk = (x * k5 * k6) / (k7 * k8);
            pk = pkm1 + pkm2 * xk;
            qk = qkm1 + qkm2 * xk;
            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;

            if (qk != 0) {
                r = pk / qk;
            }
            if (r != 0) {
                t = Math.abs((ans - r) / r);
                ans = r;
            } else {
                t = 1.0;
            }

            if (t < thresh) {
                return ans;
            }

            k1 += 1.0;
            k2 += 1.0;
            k3 += 2.0;
            k4 += 2.0;
            k5 += 1.0;
            k6 -= 1.0;
            k7 += 2.0;
            k8 += 2.0;

            if ((Math.abs(qk) + Math.abs(pk)) > big) {
                pkm2 *= biginv;
                pkm1 *= biginv;
                qkm2 *= biginv;
                qkm1 *= biginv;
            }
            if ((Math.abs(qk) < biginv) || (Math.abs(pk) < biginv)) {
                pkm2 *= big;
                pkm1 *= big;
                qkm2 *= big;
                qkm1 *= big;
            }
        } while (++n < 300);

        return ans;
    }

    /**
     * Continued fraction expansion #2 for incomplete beta integral.
     */
    public static double incompleteBetaFraction2(double a, double b, double x) {

        double xk, pk, pkm1, pkm2, qk, qkm1, qkm2;
        double k1, k2, k3, k4, k5, k6, k7, k8;
        double r, t, ans, z, thresh;
        int n;

        k1 = a;
        k2 = b - 1.0;
        k3 = a;
        k4 = a + 1.0;
        k5 = 1.0;
        k6 = a + b;
        k7 = a + 1.0;
        ;
        k8 = a + 2.0;

        pkm2 = 0.0;
        qkm2 = 1.0;
        pkm1 = 1.0;
        qkm1 = 1.0;
        z = x / (1.0 - x);
        ans = 1.0;
        r = 1.0;
        n = 0;
        thresh = 3.0 * MACHEP;
        do {
            xk = -(z * k1 * k2) / (k3 * k4);
            pk = pkm1 + pkm2 * xk;
            qk = qkm1 + qkm2 * xk;
            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;

            xk = (z * k5 * k6) / (k7 * k8);
            pk = pkm1 + pkm2 * xk;
            qk = qkm1 + qkm2 * xk;
            pkm2 = pkm1;
            pkm1 = pk;
            qkm2 = qkm1;
            qkm1 = qk;

            if (qk != 0) {
                r = pk / qk;
            }
            if (r != 0) {
                t = Math.abs((ans - r) / r);
                ans = r;
            } else {
                t = 1.0;
            }

            if (t < thresh) {
                return ans;
            }

            k1 += 1.0;
            k2 -= 1.0;
            k3 += 2.0;
            k4 += 2.0;
            k5 += 1.0;
            k6 += 1.0;
            k7 += 2.0;
            k8 += 2.0;

            if ((Math.abs(qk) + Math.abs(pk)) > big) {
                pkm2 *= biginv;
                pkm1 *= biginv;
                qkm2 *= biginv;
                qkm1 *= biginv;
            }
            if ((Math.abs(qk) < biginv) || (Math.abs(pk) < biginv)) {
                pkm2 *= big;
                pkm1 *= big;
                qkm2 *= big;
                qkm1 *= big;
            }
        } while (++n < 300);

        return ans;
    }

    /**
     * Power series for incomplete beta integral. Use when b*x is small and x not
     * too close to 1.
     */
    public static double powerSeries(double a, double b, double x) {

        double s, t, u, v, n, t1, z, ai;

        ai = 1.0 / a;
        u = (1.0 - b) * x;
        v = u / (a + 1.0);
        t1 = v;
        t = u;
        n = 2.0;
        s = 0.0;
        z = MACHEP * ai;
        while (Math.abs(v) > z) {
            u = (n - b) * x / n;
            t *= u;
            v = t / (a + n);
            s += v;
            n += 1.0;
        }
        s += t1;
        s += ai;

        u = a * Math.log(x);
        if ((a + b) < MAXGAM && Math.abs(u) < MAXLOG) {
            t = gamma(a + b) / (gamma(a) * gamma(b));
            s = s * t * Math.pow(x, a);
        } else {
            t = lnGamma(a + b) - lnGamma(a) - lnGamma(b) + u + Math.log(s);
            if (t < MINLOG) {
                s = 0.0;
            } else {
                s = Math.exp(t);
            }
        }
        return s;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     */
    public static void main(String[] ops) {

        System.out.println("Binomial standard error (0.5, 100): " + Statistics.binomialStandardError(0.5, 100));
        System.out.println("Chi-squared probability (2.558, 10): " + Statistics.chiSquaredProbability(2.558, 10));
        System.out.println("Normal probability (0.2): " + Statistics.normalProbability(0.2));
        System.out.println("F probability (5.1922, 4, 5): " + Statistics.FProbability(5.1922, 4, 5));
        System.out.println("lnGamma(6): " + Statistics.lnGamma(6));
    }
}