weka.core.Optimization.java Source code

Java tutorial

Introduction

Here is the source code for weka.core.Optimization.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Optimization.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.core;

import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.matrix.Matrix;

/**
 * Implementation of Active-sets method with BFGS update to solve optimization
 * problem with only bounds constraints in multi-dimensions. In this
 * implementation we consider both the lower and higher bound constraints.
 * <p/>
 * 
 * Here is the sketch of our searching strategy, and the detailed description of
 * the algorithm can be found in the Appendix of Xin Xu's MSc thesis:
 * <p/>
 * Initialize everything, incl. initial value, direction, etc.
 * <p/>
 * LOOP (main algorithm):<br/>
 * 
 * 1. Perform the line search using the directions for free variables<br/>
 * 1.1 Check all the bounds that are not "active" (i.e. binding variables) and
 * compute the feasible step length to the bound for each of them<br/>
 * 1.2 Pick up the least feasible step length, say \alpha, and set it as the
 * upper bound of the current step length, i.e. 0&lt;\lambda&lt;=\alpha<br/>
 * 1.3 Search for any possible step length&lt;=\alpha that can result the
 * "sufficient function decrease" (\alpha condition) AND "positive definite
 * inverse Hessian" (\beta condition), if possible, using SAFEGUARDED polynomial
 * interpolation. This step length is "safe" and thus is used to compute the
 * next value of the free variables .<br/>
 * 1.4 Fix the variable(s) that are newly bound to its constraint(s).
 * <p/>
 * 
 * 2. Check whether there is convergence of all variables or their gradients. If
 * there is, check the possibilities to release any current bindings of the
 * fixed variables to their bounds based on the "reliable" second-order
 * Lagarange multipliers if available. If it's available and negative for one
 * variable, then release it. If not available, use first-order Lagarange
 * multiplier to test release. If there is any released variables, STOP the
 * loop. Otherwise update the inverse of Hessian matrix and gradient for the
 * newly released variables and CONTINUE LOOP.
 * <p/>
 * 
 * 3. Use BFGS formula to update the inverse of Hessian matrix. Note the
 * already-fixed variables must have zeros in the corresponding entries in the
 * inverse Hessian.
 * <p/>
 * 
 * 4. Compute the new (newton) search direction d=H^{-1}*g, where H^{-1} is the
 * inverse Hessian and g is the Jacobian. Note that again, the already- fixed
 * variables will have zero direction.
 * <p/>
 * 
 * ENDLOOP
 * <p/>
 * 
 * A typical usage of this class is to create your own subclass of this class
 * and provide the objective function and gradients as follows:
 * <p/>
 * 
 * <pre>
 * class MyOpt extends Optimization {
 *   // Provide the objective function
 *   protected double objectiveFunction(double[] x) {
 *     // How to calculate your objective function...
 *     // ...
 *   }
 * 
 *   // Provide the first derivatives
 *   protected double[] evaluateGradient(double[] x) {
 *     // How to calculate the gradient of the objective function...
 *     // ...
 *   }
 * 
 *   // If possible, provide the index&circ;{th} row of the Hessian matrix
 *   protected double[] evaluateHessian(double[] x, int index) {
 *     // How to calculate the index&circ;th variable's second derivative
 *     // ...
 *   }
 * }
 * </pre>
 * 
 * When it's the time to use it, in some routine(s) of other class...
 * 
 * <pre>
 * MyOpt opt = new MyOpt();
 * 
 * // Set up initial variable values and bound constraints
 * double[] x = new double[numVariables];
 * // Lower and upper bounds: 1st row is lower bounds, 2nd is upper
 * double[] constraints = new double[2][numVariables];
 * ...
 * 
 * // Find the minimum, 200 iterations as default
 * x = opt.findArgmin(x, constraints); 
 * while(x == null){  // 200 iterations are not enough
 *    x = opt.getVarbValues();  // Try another 200 iterations
 *    x = opt.findArgmin(x, constraints);
 * }
 * 
 * // The minimal function value
 * double minFunction = opt.getMinFunction();
 * ...
 * </pre>
 * 
 * It is recommended that Hessian values be provided so that the second-order
 * Lagrangian multiplier estimate can be calcluated. However, if it is not
 * provided, there is no need to override the <code>evaluateHessian()</code>
 * function.
 * <p/>
 * 
 * REFERENCES (see also the <code>getTechnicalInformation()</code> method):<br/>
 * The whole model algorithm is adapted from Chapter 5 and other related
 * chapters in Gill, Murray and Wright(1981) "Practical Optimization", Academic
 * Press. and Gill and Murray(1976) "Minimization Subject to Bounds on the
 * Variables", NPL Report NAC72, while Chong and Zak(1996) "An Introduction to
 * Optimization", John Wiley &amp; Sons, Inc. provides us a brief but helpful
 * introduction to the method.
 * <p/>
 * 
 * Dennis and Schnabel(1983) "Numerical Methods for Unconstrained Optimization
 * and Nonlinear Equations", Prentice-Hall Inc. and Press et al.(1992) "Numeric
 * Recipe in C", Second Edition, Cambridge University Press. are consulted for
 * the polynomial interpolation used in the line search implementation.
 * <p/>
 * 
 * The Hessian modification in BFGS update uses Cholesky factorization and two
 * rank-one modifications:<br/>
 * Bk+1 = Bk + (Gk*Gk')/(Gk'Dk) + (dGk*(dGk)'))/[alpha*(dGk)'*Dk]. <br/>
 * where Gk is the gradient vector, Dk is the direction vector and alpha is the
 * step rate. <br/>
 * This method is due to Gill, Golub, Murray and Saunders(1974) ``Methods for
 * Modifying Matrix Factorizations'', Mathematics of Computation, Vol.28,
 * No.126, pp 505-535.
 * <p/>
 * 
 * @author Xin Xu (xx5@cs.waikato.ac.nz)
 * @version $Revision$
 * @see #getTechnicalInformation()
 */
public abstract class Optimization implements TechnicalInformationHandler, RevisionHandler {

    protected double m_ALF = 1.0e-4;

    protected double m_BETA = 0.9;

    protected double m_TOLX = 1.0e-6;

    protected double m_STPMX = 100.0;

    protected int m_MAXITS = 200;

    protected boolean m_Debug = false;

    /** function value */
    protected double m_f;

    /** G'*p */
    private double m_Slope;

    /** Test if zero step in lnsrch */
    protected boolean m_IsZeroStep = false;

    /** Used when iteration overflow occurs */
    protected double[] m_X;

    /** Compute machine precision */
    protected static double m_Epsilon, m_Zero;
    static {
        m_Epsilon = 1.0;
        while (1.0 + m_Epsilon > 1.0) {
            m_Epsilon /= 2.0;
        }
        m_Epsilon *= 2.0;
        m_Zero = Math.sqrt(m_Epsilon);
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;
        TechnicalInformation additional;

        result = new TechnicalInformation(Type.MASTERSTHESIS);
        result.setValue(Field.AUTHOR, "Xin Xu");
        result.setValue(Field.YEAR, "2003");
        result.setValue(Field.TITLE, "Statistical learning in multiple instance problem");
        result.setValue(Field.SCHOOL, "University of Waikato");
        result.setValue(Field.ADDRESS, "Hamilton, NZ");
        result.setValue(Field.NOTE, "0657.594");

        additional = result.add(Type.BOOK);
        additional.setValue(Field.AUTHOR, "P. E. Gill and W. Murray and M. H. Wright");
        additional.setValue(Field.YEAR, "1981");
        additional.setValue(Field.TITLE, "Practical Optimization");
        additional.setValue(Field.PUBLISHER, "Academic Press");
        additional.setValue(Field.ADDRESS, "London and New York");

        additional = result.add(Type.TECHREPORT);
        additional.setValue(Field.AUTHOR, "P. E. Gill and W. Murray");
        additional.setValue(Field.YEAR, "1976");
        additional.setValue(Field.TITLE, "Minimization subject to bounds on the variables");
        additional.setValue(Field.INSTITUTION, "National Physical Laboratory");
        additional.setValue(Field.NUMBER, "NAC 72");

        additional = result.add(Type.BOOK);
        additional.setValue(Field.AUTHOR, "E. K. P. Chong and S. H. Zak");
        additional.setValue(Field.YEAR, "1996");
        additional.setValue(Field.TITLE, "An Introduction to Optimization");
        additional.setValue(Field.PUBLISHER, "John Wiley and Sons");
        additional.setValue(Field.ADDRESS, "New York");

        additional = result.add(Type.BOOK);
        additional.setValue(Field.AUTHOR, "J. E. Dennis and R. B. Schnabel");
        additional.setValue(Field.YEAR, "1983");
        additional.setValue(Field.TITLE,
                "Numerical Methods for Unconstrained Optimization and Nonlinear Equations");
        additional.setValue(Field.PUBLISHER, "Prentice-Hall");

        additional = result.add(Type.BOOK);
        additional.setValue(Field.AUTHOR,
                "W. H. Press and B. P. Flannery and S. A. Teukolsky and W. T. Vetterling");
        additional.setValue(Field.YEAR, "1992");
        additional.setValue(Field.TITLE, "Numerical Recipes in C");
        additional.setValue(Field.PUBLISHER, "Cambridge University Press");
        additional.setValue(Field.EDITION, "Second");

        additional = result.add(Type.ARTICLE);
        additional.setValue(Field.AUTHOR, "P. E. Gill and G. H. Golub and W. Murray and M. A. Saunders");
        additional.setValue(Field.YEAR, "1974");
        additional.setValue(Field.TITLE, "Methods for modifying matrix factorizations");
        additional.setValue(Field.JOURNAL, "Mathematics of Computation");
        additional.setValue(Field.VOLUME, "28");
        additional.setValue(Field.NUMBER, "126");
        additional.setValue(Field.PAGES, "505-535");

        return result;
    }

    /**
     * Subclass should implement this procedure to evaluate objective function to
     * be minimized
     * 
     * @param x the variable values
     * @return the objective function value
     * @throws Exception if something goes wrong
     */
    protected abstract double objectiveFunction(double[] x) throws Exception;

    /**
     * Subclass should implement this procedure to evaluate gradient of the
     * objective function
     * 
     * @param x the variable values
     * @return the gradient vector
     * @throws Exception if something goes wrong
     */
    protected abstract double[] evaluateGradient(double[] x) throws Exception;

    /**
     * Subclass is recommended to override this procedure to evaluate second-order
     * gradient of the objective function. If it's not provided, it returns null.
     * 
     * @param x the variables
     * @param index the row index in the Hessian matrix
     * @return one row (the row #index) of the Hessian matrix, null as default
     * @throws Exception if something goes wrong
     */
    protected double[] evaluateHessian(double[] x, int index) throws Exception {
        return null;
    }

    /**
     * Get the minimal function value
     * 
     * @return minimal function value found
     */
    public double getMinFunction() {
        return m_f;
    }

    /**
     * Set the maximal number of iterations in searching (Default 200)
     * 
     * @param it the maximal number of iterations
     */
    public void setMaxIteration(int it) {
        m_MAXITS = it;
    }

    /**
     * Set whether in debug mode
     * 
     * @param db use debug or not
     */
    public void setDebug(boolean db) {
        m_Debug = db;
    }

    /**
     * Get the variable values. Only needed when iterations exceeds the max
     * threshold.
     * 
     * @return the current variable values
     */
    public double[] getVarbValues() {
        return m_X;
    }

    /**
     * Find a new point x in the direction p from a point xold at which the value
     * of the function has decreased sufficiently, the positive definiteness of B
     * matrix (approximation of the inverse of the Hessian) is preserved and no
     * bound constraints are violated. Details see "Numerical Methods for
     * Unconstrained Optimization and Nonlinear Equations". "Numeric Recipes in C"
     * was also consulted.
     * 
     * @param xold old x value
     * @param gradient gradient at that point
     * @param direct direction vector
     * @param stpmax maximum step length
     * @param isFixed indicating whether a variable has been fixed
     * @param nwsBounds non-working set bounds. Means these variables are free and
     *          subject to the bound constraints in this step
     * @param wsBdsIndx index of variables that has working-set bounds. Means
     *          these variables are already fixed and no longer subject to the
     *          constraints
     * @return new value along direction p from xold, null if no step was taken
     * @throws Exception if an error occurs
     */
    public double[] lnsrch(double[] xold, double[] gradient, double[] direct, double stpmax, boolean[] isFixed,
            double[][] nwsBounds, DynamicIntArray wsBdsIndx) throws Exception {

        if (m_Debug) {
            System.err.print("Machine precision is " + m_Epsilon + " and zero set to " + m_Zero);
        }

        int i, k, len = xold.length, fixedOne = -1; // idx of variable to be fixed
        double alam, alamin; // lambda to be found, and its lower bound

        // For convergence and bound test
        double temp, test, alpha = Double.POSITIVE_INFINITY, fold = m_f, sum;

        // For cubic interpolation
        double a, alam2 = 0, b, disc = 0, maxalam = 1.0, rhs1, rhs2, tmplam;

        double[] x = new double[len]; // New variable values

        // Scale the step
        for (sum = 0.0, i = 0; i < len; i++) {
            if (!isFixed[i]) {
                sum += direct[i] * direct[i];
            }
        }
        sum = Math.sqrt(sum);

        if (m_Debug) {
            System.err.println("fold:  " + Utils.doubleToString(fold, 10, 7) + "\n" + "sum:  "
                    + Utils.doubleToString(sum, 10, 7) + "\n" + "stpmax:  " + Utils.doubleToString(stpmax, 10, 7));
        }
        if (sum > stpmax) {
            for (i = 0; i < len; i++) {
                if (!isFixed[i]) {
                    direct[i] *= stpmax / sum;
                }
            }
        } else {
            maxalam = stpmax / sum;
        }

        // Compute initial rate of decrease, g'*d
        m_Slope = 0.0;
        for (i = 0; i < len; i++) {
            x[i] = xold[i];
            if (!isFixed[i]) {
                m_Slope += gradient[i] * direct[i];
            }
        }

        if (m_Debug) {
            System.err.print("slope:  " + Utils.doubleToString(m_Slope, 10, 7) + "\n");
        }

        // Slope too small
        if (Math.abs(m_Slope) <= m_Zero) {
            if (m_Debug) {
                System.err
                        .println("Gradient and direction orthogonal -- " + "Min. found with current fixed variables"
                                + " (or all variables fixed). Try to release" + " some variables now.");
            }
            return x;
        }

        // Err: slope > 0
        if (m_Slope > m_Zero) {
            if (m_Debug) {
                for (int h = 0; h < x.length; h++) {
                    System.err.println(h + ": isFixed=" + isFixed[h] + ", x=" + x[h] + ", grad=" + gradient[h]
                            + ", direct=" + direct[h]);
                }
            }
            throw new Exception("g'*p positive! -- Try to debug from here: line 327.");
        }

        // Compute LAMBDAmin and upper bound of lambda--alpha
        test = 0.0;
        for (i = 0; i < len; i++) {
            if (!isFixed[i]) {// No need for fixed variables
                temp = Math.abs(direct[i]) / Math.max(Math.abs(x[i]), 1.0);
                if (temp > test) {
                    test = temp;
                }
            }
        }

        if (test > m_Zero) {
            alamin = m_TOLX / test;
        } else {
            if (m_Debug) {
                System.err.println(
                        "Zero directions for all free variables -- " + "Min. found with current fixed variables"
                                + " (or all variables fixed). Try to release" + " some variables now.");
            }
            return x;
        }

        // Check whether any non-working-set bounds are "binding"
        for (i = 0; i < len; i++) {
            if (!isFixed[i]) {// No need for fixed variables
                double alpi;
                if ((direct[i] < -m_Epsilon) && !Double.isNaN(nwsBounds[0][i])) {// Not
                                                                                 // feasible
                    alpi = (nwsBounds[0][i] - xold[i]) / direct[i];
                    if (alpi <= m_Zero) { // Zero
                        if (m_Debug) {
                            System.err.println("Fix variable " + i + " to lower bound " + nwsBounds[0][i]
                                    + " from value " + xold[i]);
                        }
                        x[i] = nwsBounds[0][i];
                        isFixed[i] = true; // Fix this variable
                        alpha = 0.0;
                        nwsBounds[0][i] = Double.NaN; // Add cons. to working set
                        wsBdsIndx.addElement(i);
                    } else if (alpha > alpi) { // Fix one variable in one iteration
                        alpha = alpi;
                        fixedOne = i;
                    }
                } else if ((direct[i] > m_Epsilon) && !Double.isNaN(nwsBounds[1][i])) {// Not
                                                                                       // feasible
                    alpi = (nwsBounds[1][i] - xold[i]) / direct[i];
                    if (alpi <= m_Zero) { // Zero
                        if (m_Debug) {
                            System.err.println("Fix variable " + i + " to upper bound " + nwsBounds[1][i]
                                    + " from value " + xold[i]);
                        }
                        x[i] = nwsBounds[1][i];
                        isFixed[i] = true; // Fix this variable
                        alpha = 0.0;
                        nwsBounds[1][i] = Double.NaN; // Add cons. to working set
                        wsBdsIndx.addElement(i);
                    } else if (alpha > alpi) {
                        alpha = alpi;
                        fixedOne = i;
                    }
                }
            }
        }

        if (m_Debug) {
            System.err.println("alamin: " + Utils.doubleToString(alamin, 10, 7));
            System.err.println("alpha: " + Utils.doubleToString(alpha, 10, 7));
        }

        if (alpha <= m_Zero) { // Zero
            m_IsZeroStep = true;
            if (m_Debug) {
                System.err.println("Alpha too small, try again");
            }
            return x;
        }

        alam = alpha; // Always try full feasible newton step
        if (alam > 1.0) {
            alam = 1.0;
        }

        // Iteration of one newton step, if necessary, backtracking is done
        double initF = fold, // Initial function value
                hi = alam, lo = alam, newSlope = 0, fhi = m_f, flo = m_f;// Variables used
                                                                         // for beta
                                                                         // condition
        double[] newGrad; // Gradient on the new variable values

        kloop: for (k = 0;; k++) {
            if (m_Debug) {
                System.err.println("\nLine search iteration: " + k);
            }

            for (i = 0; i < len; i++) {
                if (!isFixed[i]) {
                    x[i] = xold[i] + alam * direct[i]; // Compute xnew
                    if (!Double.isNaN(nwsBounds[0][i]) && (x[i] < nwsBounds[0][i])) {
                        x[i] = nwsBounds[0][i]; // Rounding error
                    } else if (!Double.isNaN(nwsBounds[1][i]) && (x[i] > nwsBounds[1][i])) {
                        x[i] = nwsBounds[1][i]; // Rounding error
                    }
                }
            }

            m_f = objectiveFunction(x); // Compute fnew
            if (Double.isNaN(m_f)) {
                throw new Exception("Objective function value is NaN!");
            }

            while (Double.isInfinite(m_f)) { // Avoid infinity
                if (m_Debug) {
                    System.err.println("Too large m_f.  Shrink step by half.");
                }
                alam *= 0.5; // Shrink by half
                if (alam <= m_Epsilon) {
                    if (m_Debug) {
                        System.err.println("Wrong starting points, change them!");
                    }
                    return x;
                }

                for (i = 0; i < len; i++) {
                    if (!isFixed[i]) {
                        x[i] = xold[i] + alam * direct[i];
                    }
                }

                m_f = objectiveFunction(x);
                if (Double.isNaN(m_f)) {
                    throw new Exception("Objective function value is NaN!");
                }

                initF = Double.POSITIVE_INFINITY;
            }

            if (m_Debug) {
                System.err.println("obj. function: " + Utils.doubleToString(m_f, 10, 7));
                System.err.println("threshold: " + Utils.doubleToString(fold + m_ALF * alam * m_Slope, 10, 7));
            }

            if (m_f <= fold + m_ALF * alam * m_Slope) {// Alpha condition: sufficient
                                                       // function decrease
                if (m_Debug) {
                    System.err.println("Sufficient function decrease (alpha condition): ");
                }
                newGrad = evaluateGradient(x);
                for (newSlope = 0.0, i = 0; i < len; i++) {
                    if (!isFixed[i]) {
                        newSlope += newGrad[i] * direct[i];
                    }
                }

                if (m_Debug) {
                    System.err.println("newSlope: " + newSlope);
                }

                if (newSlope >= m_BETA * m_Slope) { // Beta condition: ensure pos.
                                                    // defnty.
                    if (m_Debug) {
                        System.err.println("Increasing derivatives (beta condition): ");
                    }

                    if ((fixedOne != -1) && (alam >= alpha)) { // Has bounds and over
                        if (direct[fixedOne] > 0) {
                            x[fixedOne] = nwsBounds[1][fixedOne]; // Avoid rounding error
                            nwsBounds[1][fixedOne] = Double.NaN; // Add cons. to working set
                        } else {
                            x[fixedOne] = nwsBounds[0][fixedOne]; // Avoid rounding error
                            nwsBounds[0][fixedOne] = Double.NaN; // Add cons. to working set
                        }

                        if (m_Debug) {
                            System.err.println("Fix variable " + fixedOne + " to bound " + x[fixedOne]
                                    + " from value " + xold[fixedOne]);
                        }
                        isFixed[fixedOne] = true; // Fix the variable
                        wsBdsIndx.addElement(fixedOne);
                    }
                    return x;
                } else if (k == 0) { // First time: increase alam
                    // Search for the smallest value not complying with alpha condition
                    double upper = Math.min(alpha, maxalam);
                    if (m_Debug) {
                        System.err.println("Alpha condition holds, increase alpha... ");
                    }
                    while (!((alam >= upper) || (m_f > fold + m_ALF * alam * m_Slope))) {
                        lo = alam;
                        flo = m_f;
                        alam *= 2.0;
                        if (alam >= upper) {
                            alam = upper;
                        }

                        for (i = 0; i < len; i++) {
                            if (!isFixed[i]) {
                                x[i] = xold[i] + alam * direct[i];
                            }
                        }
                        m_f = objectiveFunction(x);
                        if (Double.isNaN(m_f)) {
                            throw new Exception("Objective function value is NaN!");
                        }

                        newGrad = evaluateGradient(x);
                        for (newSlope = 0.0, i = 0; i < len; i++) {
                            if (!isFixed[i]) {
                                newSlope += newGrad[i] * direct[i];
                            }
                        }

                        if (newSlope >= m_BETA * m_Slope) {
                            if (m_Debug) {
                                System.err.println("Increasing derivatives (beta condition): \n" + "newSlope = "
                                        + Utils.doubleToString(newSlope, 10, 7));
                            }

                            if ((fixedOne != -1) && (alam >= alpha)) { // Has bounds and over
                                if (direct[fixedOne] > 0) {
                                    x[fixedOne] = nwsBounds[1][fixedOne]; // Avoid rounding error
                                    nwsBounds[1][fixedOne] = Double.NaN; // Add cons. to working
                                                                         // set
                                } else {
                                    x[fixedOne] = nwsBounds[0][fixedOne]; // Avoid rounding error
                                    nwsBounds[0][fixedOne] = Double.NaN; // Add cons. to working
                                                                         // set
                                }

                                if (m_Debug) {
                                    System.err.println("Fix variable " + fixedOne + " to bound " + x[fixedOne]
                                            + " from value " + xold[fixedOne]);
                                }
                                isFixed[fixedOne] = true; // Fix the variable
                                wsBdsIndx.addElement(fixedOne);
                            }
                            return x;
                        }
                    }
                    hi = alam;
                    fhi = m_f;
                    break kloop;
                } else {
                    if (m_Debug) {
                        System.err.println("Alpha condition holds.");
                    }
                    hi = alam2;
                    lo = alam;
                    flo = m_f;
                    break kloop;
                }
            } else if (alam < alamin) { // No feasible lambda found
                if (initF < fold) {
                    alam = Math.min(1.0, alpha);
                    for (i = 0; i < len; i++) {
                        if (!isFixed[i]) {
                            x[i] = xold[i] + alam * direct[i]; // Still take Alpha
                        }
                    }

                    if (m_Debug) {
                        System.err.println("No feasible lambda: still take" + " alpha=" + alam);
                    }

                    if ((fixedOne != -1) && (alam >= alpha)) { // Has bounds and over
                        if (direct[fixedOne] > 0) {
                            x[fixedOne] = nwsBounds[1][fixedOne]; // Avoid rounding error
                            nwsBounds[1][fixedOne] = Double.NaN; // Add cons. to working set
                        } else {
                            x[fixedOne] = nwsBounds[0][fixedOne]; // Avoid rounding error
                            nwsBounds[0][fixedOne] = Double.NaN; // Add cons. to working set
                        }

                        if (m_Debug) {
                            System.err.println("Fix variable " + fixedOne + " to bound " + x[fixedOne]
                                    + " from value " + xold[fixedOne]);
                        }
                        isFixed[fixedOne] = true; // Fix the variable
                        wsBdsIndx.addElement(fixedOne);
                    }
                } else { // Convergence on delta(x)
                    for (i = 0; i < len; i++) {
                        x[i] = xold[i];
                    }
                    m_f = fold;
                    if (m_Debug) {
                        System.err.println("Cannot find feasible lambda");
                    }
                }

                return x;
            } else { // Backtracking by polynomial interpolation
                if (k == 0) { // First time backtrack: quadratic interpolation
                    if (!Double.isInfinite(initF)) {
                        initF = m_f;
                    }
                    // lambda = -g'(0)/(2*g''(0))
                    tmplam = -0.5 * alam * m_Slope / ((m_f - fold) / alam - m_Slope);
                } else { // Subsequent backtrack: cubic interpolation
                    rhs1 = m_f - fold - alam * m_Slope;
                    rhs2 = fhi - fold - alam2 * m_Slope;
                    a = (rhs1 / (alam * alam) - rhs2 / (alam2 * alam2)) / (alam - alam2);
                    b = (-alam2 * rhs1 / (alam * alam) + alam * rhs2 / (alam2 * alam2)) / (alam - alam2);
                    if (a == 0.0) {
                        tmplam = -m_Slope / (2.0 * b);
                    } else {
                        disc = b * b - 3.0 * a * m_Slope;
                        if (disc < 0.0) {
                            disc = 0.0;
                        }
                        double numerator = -b + Math.sqrt(disc);
                        if (numerator >= Double.MAX_VALUE) {
                            numerator = Double.MAX_VALUE;
                            if (m_Debug) {
                                System.err.print("-b+sqrt(disc) too large! Set it to MAX_VALUE.");
                            }
                        }
                        tmplam = numerator / (3.0 * a);
                    }
                    if (m_Debug) {
                        System.err.print("Cubic interpolation: \n" + "a:   " + Utils.doubleToString(a, 10, 7) + "\n"
                                + "b:   " + Utils.doubleToString(b, 10, 7) + "\n" + "disc:   "
                                + Utils.doubleToString(disc, 10, 7) + "\n" + "tmplam:   " + tmplam + "\n"
                                + "alam:   " + Utils.doubleToString(alam, 10, 7) + "\n");
                    }
                    if (tmplam > 0.5 * alam) {
                        tmplam = 0.5 * alam; // lambda <= 0.5*lambda_old
                    }
                }
            }
            alam2 = alam;
            fhi = m_f;
            alam = Math.max(tmplam, 0.1 * alam); // lambda >= 0.1*lambda_old

            if (alam > alpha) {
                throw new Exception("Sth. wrong in lnsrch:" + "Lambda infeasible!(lambda=" + alam + ", alpha="
                        + alpha + ", upper=" + tmplam + "|"
                        + (-alpha * m_Slope / (2.0 * ((m_f - fold) / alpha - m_Slope))) + ", m_f=" + m_f + ", fold="
                        + fold + ", slope=" + m_Slope);
            }
        } // Endfor(k=0;;k++)

        // Quadratic interpolation between lamda values between lo and hi.
        // If cannot find a value satisfying beta condition, use lo.
        double ldiff = hi - lo, lincr;
        if (m_Debug) {
            System.err.println("Last stage of searching for beta condition (alam between "
                    + Utils.doubleToString(lo, 10, 7) + " and " + Utils.doubleToString(hi, 10, 7) + ")...\n"
                    + "Quadratic Interpolation(QI):\n" + "Last newSlope = "
                    + Utils.doubleToString(newSlope, 10, 7));
        }

        while ((newSlope < m_BETA * m_Slope) && (ldiff >= alamin)) {
            lincr = -0.5 * newSlope * ldiff * ldiff / (fhi - flo - newSlope * ldiff);

            if (m_Debug) {
                System.err.println("fhi = " + fhi + "\n" + "flo = " + flo + "\n" + "ldiff = " + ldiff + "\n"
                        + "lincr (using QI) = " + lincr + "\n");
            }

            if (lincr < 0.2 * ldiff) {
                lincr = 0.2 * ldiff;
            }
            alam = lo + lincr;
            if (alam >= hi) { // We cannot go beyond the bounds, so the best we can
                              // try is hi
                alam = hi;
                lincr = ldiff;
            }
            for (i = 0; i < len; i++) {
                if (!isFixed[i]) {
                    x[i] = xold[i] + alam * direct[i];
                }
            }
            m_f = objectiveFunction(x);
            if (Double.isNaN(m_f)) {
                throw new Exception("Objective function value is NaN!");
            }

            if (m_f > fold + m_ALF * alam * m_Slope) {
                // Alpha condition fails, shrink lambda_upper
                ldiff = lincr;
                fhi = m_f;
            } else { // Alpha condition holds
                newGrad = evaluateGradient(x);
                for (newSlope = 0.0, i = 0; i < len; i++) {
                    if (!isFixed[i]) {
                        newSlope += newGrad[i] * direct[i];
                    }
                }

                if (newSlope < m_BETA * m_Slope) {
                    // Beta condition fails, shrink lambda_lower
                    lo = alam;
                    ldiff -= lincr;
                    flo = m_f;
                }
            }
        }

        if (newSlope < m_BETA * m_Slope) { // Cannot satisfy beta condition, take lo
            if (m_Debug) {
                System.err.println("Beta condition cannot be satisfied, take alpha condition");
            }
            alam = lo;
            for (i = 0; i < len; i++) {
                if (!isFixed[i]) {
                    x[i] = xold[i] + alam * direct[i];
                }
            }
            m_f = flo;
        } else if (m_Debug) {
            System.err.println(
                    "Both alpha and beta conditions are satisfied. alam=" + Utils.doubleToString(alam, 10, 7));
        }

        if ((fixedOne != -1) && (alam >= alpha)) { // Has bounds and over
            if (direct[fixedOne] > 0) {
                x[fixedOne] = nwsBounds[1][fixedOne]; // Avoid rounding error
                nwsBounds[1][fixedOne] = Double.NaN; // Add cons. to working set
            } else {
                x[fixedOne] = nwsBounds[0][fixedOne]; // Avoid rounding error
                nwsBounds[0][fixedOne] = Double.NaN; // Add cons. to working set
            }

            if (m_Debug) {
                System.err.println(
                        "Fix variable " + fixedOne + " to bound " + x[fixedOne] + " from value " + xold[fixedOne]);
            }
            isFixed[fixedOne] = true; // Fix the variable
            wsBdsIndx.addElement(fixedOne);
        }

        return x;
    }

    /**
     * Main algorithm. Descriptions see "Practical Optimization"
     * 
     * @param initX initial point of x, assuming no value's on the bound!
     * @param constraints the bound constraints of each variable constraints[0] is
     *          the lower bounds and constraints[1] is the upper bounds
     * @return the solution of x, null if number of iterations not enough
     * @throws Exception if an error occurs
     */
    public double[] findArgmin(double[] initX, double[][] constraints) throws Exception {
        int l = initX.length;

        // Initially all variables are free, all bounds are constraints of
        // non-working-set constraints
        boolean[] isFixed = new boolean[l];
        double[][] nwsBounds = new double[2][l];
        // Record indice of fixed variables, simply for efficiency
        DynamicIntArray wsBdsIndx = new DynamicIntArray(constraints.length);
        // Vectors used to record the variable indices to be freed
        DynamicIntArray toFree = null, oldToFree = null;

        // Initial value of obj. function, gradient and inverse of the Hessian
        m_f = objectiveFunction(initX);
        if (Double.isNaN(m_f)) {
            throw new Exception("Objective function value is NaN!");
        }

        double sum = 0;
        double[] grad = evaluateGradient(initX), oldGrad, oldX, deltaGrad = new double[l], deltaX = new double[l],
                direct = new double[l], x = new double[l];
        Matrix L = new Matrix(l, l); // Lower triangle of Cholesky factor
        double[] D = new double[l]; // Diagonal of Cholesky factor
        for (int i = 0; i < l; i++) {
            // L.setRow(i, new double[l]); Not necessary
            L.set(i, i, 1.0);
            D[i] = 1.0;
            direct[i] = -grad[i];
            sum += grad[i] * grad[i];
            x[i] = initX[i];
            nwsBounds[0][i] = constraints[0][i];
            nwsBounds[1][i] = constraints[1][i];
            isFixed[i] = false;
        }
        double stpmax = m_STPMX * Math.max(Math.sqrt(sum), l);

        for (int step = 0; step < m_MAXITS; step++) {
            if (m_Debug) {
                System.err.println("\nIteration # " + step + ":");
            }

            // Try at most one feasible newton step, i.e. 0<lamda<=alpha
            oldX = x;
            oldGrad = grad;

            // Also update grad
            if (m_Debug) {
                System.err.println("Line search ... ");
            }
            m_IsZeroStep = false;
            x = lnsrch(x, grad, direct, stpmax, isFixed, nwsBounds, wsBdsIndx);
            if (m_Debug) {
                System.err.println("Line search finished.");
            }

            if (m_IsZeroStep) { // Zero step, simply delete rows/cols of D and L
                for (int f = 0; f < wsBdsIndx.size(); f++) {
                    int[] idx = new int[1];
                    // int idx=wsBdsIndx.elementAt(f);
                    idx[0] = wsBdsIndx.elementAt(f);
                    L.setMatrix(idx, 0, l - 1, new Matrix(1, l));
                    // L.setRow(idx, new double[l]);
                    L.setMatrix(0, l - 1, idx, new Matrix(l, 1));
                    // L.setColumn(idx, new double[l]);
                    D[idx[0]] = 0.0;
                    // D[idx] = 0.0;
                }
                grad = evaluateGradient(x);
                step--;
            } else {
                // Check converge on x
                boolean finish = false;
                double test = 0.0;
                for (int h = 0; h < l; h++) {
                    deltaX[h] = x[h] - oldX[h];
                    double tmp = Math.abs(deltaX[h]) / Math.max(Math.abs(x[h]), 1.0);
                    if (tmp > test) {
                        test = tmp;
                    }
                }
                if (test < m_Zero) {
                    if (m_Debug) {
                        System.err.println("\nDeltaX converge: " + test);
                    }
                    finish = true;
                }

                // Check zero gradient
                grad = evaluateGradient(x);
                test = 0.0;
                double denom = 0.0, dxSq = 0.0, dgSq = 0.0, newlyBounded = 0.0;
                for (int g = 0; g < l; g++) {
                    if (!isFixed[g]) {
                        deltaGrad[g] = grad[g] - oldGrad[g];
                        // Calculate the denominators
                        denom += deltaX[g] * deltaGrad[g];
                        dxSq += deltaX[g] * deltaX[g];
                        dgSq += deltaGrad[g] * deltaGrad[g];
                    } else {
                        newlyBounded += deltaX[g] * (grad[g] - oldGrad[g]);
                    }

                    // Note: CANNOT use projected gradient for testing
                    // convergence because of newly bounded variables
                    double tmp = Math.abs(grad[g]) * Math.max(Math.abs(direct[g]), 1.0)
                            / Math.max(Math.abs(m_f), 1.0);
                    if (tmp > test) {
                        test = tmp;
                    }
                }

                if (test < m_Zero) {
                    if (m_Debug) {
                        System.err.println("Gradient converge: " + test);
                    }
                    finish = true;
                }

                // dg'*dx could be < 0 using inexact lnsrch
                if (m_Debug) {
                    System.err.println("dg'*dx=" + (denom + newlyBounded));
                }
                // dg'*dx = 0
                if (Math.abs(denom + newlyBounded) < m_Zero) {
                    finish = true;
                }

                int size = wsBdsIndx.size();
                boolean isUpdate = true; // Whether to update BFGS formula
                // Converge: check whether release any current constraints
                if (finish) {
                    if (m_Debug) {
                        System.err.println("Test any release possible ...");
                    }

                    if (toFree != null) {
                        oldToFree = (DynamicIntArray) toFree.copy();
                    }
                    toFree = new DynamicIntArray(wsBdsIndx.size());

                    for (int m = size - 1; m >= 0; m--) {
                        int index = wsBdsIndx.elementAt(m);
                        double[] hessian = evaluateHessian(x, index);
                        double deltaL = 0.0;
                        if (hessian != null) {
                            for (int mm = 0; mm < hessian.length; mm++) {
                                if (!isFixed[mm]) {
                                    deltaL += hessian[mm] * direct[mm];
                                }
                            }
                        }

                        // First and second order Lagrangian multiplier estimate
                        // If user didn't provide Hessian, use first-order only
                        double L1, L2;
                        if (x[index] >= constraints[1][index]) {
                            L1 = -grad[index];
                        } else if (x[index] <= constraints[0][index]) {
                            L1 = grad[index];
                        } else {
                            throw new Exception(
                                    "x[" + index + "] not fixed on the" + " bounds where it should have been!");
                        }

                        // L2 = L1 + deltaL
                        L2 = L1 + deltaL;
                        if (m_Debug) {
                            System.err.println("Variable " + index + ": Lagrangian=" + L1 + "|" + L2);
                        }

                        // Check validity of Lagrangian multiplier estimate
                        boolean isConverge = (2.0 * Math.abs(deltaL)) < Math.min(Math.abs(L1), Math.abs(L2));
                        if ((L1 * L2 > 0.0) && isConverge) { // Same sign and converge:
                                                             // valid
                            if (L2 < 0.0) {// Negative Lagrangian: feasible
                                toFree.addElement(index);
                                wsBdsIndx.removeElementAt(m);
                                finish = false; // Not optimal, cannot finish
                            }
                        }

                        // Although hardly happen, better check it
                        // If the first-order Lagrangian multiplier estimate is wrong,
                        // avoid zigzagging
                        if ((hessian == null) && (toFree != null) && toFree.equal(oldToFree)) {
                            finish = true;
                        }
                    }

                    if (finish) {// Min. found
                        if (m_Debug) {
                            System.err.println("Minimum found.");
                        }
                        m_f = objectiveFunction(x);
                        if (Double.isNaN(m_f)) {
                            throw new Exception("Objective function value is NaN!");
                        }
                        return x;
                    }

                    // Free some variables
                    for (int mmm = 0; mmm < toFree.size(); mmm++) {
                        int freeIndx = toFree.elementAt(mmm);
                        isFixed[freeIndx] = false; // Free this variable
                        if (x[freeIndx] <= constraints[0][freeIndx]) {// Lower bound
                            nwsBounds[0][freeIndx] = constraints[0][freeIndx];
                            if (m_Debug) {
                                System.err.println(
                                        "Free variable " + freeIndx + " from bound " + nwsBounds[0][freeIndx]);
                            }
                        } else { // Upper bound
                            nwsBounds[1][freeIndx] = constraints[1][freeIndx];
                            if (m_Debug) {
                                System.err.println(
                                        "Free variable " + freeIndx + " from bound " + nwsBounds[1][freeIndx]);
                            }
                        }
                        L.set(freeIndx, freeIndx, 1.0);
                        D[freeIndx] = 1.0;
                        isUpdate = false;
                    }
                }

                if (denom < Math.max(m_Zero * Math.sqrt(dxSq) * Math.sqrt(dgSq), m_Zero)) {
                    if (m_Debug) {
                        System.err.println("dg'*dx negative!");
                    }
                    isUpdate = false; // Do not update
                }
                // If Hessian will be positive definite, update it
                if (isUpdate) {

                    // modify once: dg*dg'/(dg'*dx)
                    double coeff = 1.0 / denom; // 1/(dg'*dx)
                    updateCholeskyFactor(L, D, deltaGrad, coeff, isFixed);

                    // modify twice: g*g'/(g'*p)
                    coeff = 1.0 / m_Slope; // 1/(g'*p)
                    updateCholeskyFactor(L, D, oldGrad, coeff, isFixed);
                }
            }

            // Find new direction
            Matrix LD = new Matrix(l, l); // L*D
            double[] b = new double[l];

            for (int k = 0; k < l; k++) {
                if (!isFixed[k]) {
                    b[k] = -grad[k];
                } else {
                    b[k] = 0.0;
                }

                for (int j = k; j < l; j++) { // Lower triangle
                    if (!isFixed[j] && !isFixed[k]) {
                        LD.set(j, k, L.get(j, k) * D[k]);
                    }
                }
            }

            // Solve (LD)*y = -g, where y=L'*direct
            double[] LDIR = solveTriangle(LD, b, true, isFixed);
            LD = null;

            for (int m = 0; m < LDIR.length; m++) {
                if (Double.isNaN(LDIR[m])) {
                    throw new Exception(
                            "L*direct[" + m + "] is NaN!" + "|-g=" + b[m] + "|" + isFixed[m] + "|diag=" + D[m]);
                }
            }

            // Solve L'*direct = y
            direct = solveTriangle(L, LDIR, false, isFixed);
            for (double element : direct) {
                if (Double.isNaN(element)) {
                    throw new Exception("direct is NaN!");
                }
            }

            // System.gc();
        }

        if (m_Debug) {
            System.err.println("Cannot find minimum" + " -- too many interations!");
        }
        m_X = x;
        return null;
    }

    /**
     * Solve the linear equation of TX=B where T is a triangle matrix It can be
     * solved using back/forward substitution, with O(N^2) complexity
     * 
     * @param t the matrix T
     * @param b the vector B
     * @param isLower whether T is a lower or higher triangle matrix
     * @param isZero which row(s) of T are not used when solving the equation. If
     *          it's null or all 'false', then every row is used.
     * @return the solution of X
     */
    public static double[] solveTriangle(Matrix t, double[] b, boolean isLower, boolean[] isZero) {
        int n = b.length;
        double[] result = new double[n];
        if (isZero == null) {
            isZero = new boolean[n];
        }

        if (isLower) { // lower triangle, forward-substitution
            int j = 0;
            while ((j < n) && isZero[j]) {
                result[j] = 0.0;
                j++;
            } // go to the first row

            if (j < n) {
                result[j] = b[j] / t.get(j, j);

                for (; j < n; j++) {
                    if (!isZero[j]) {
                        double numerator = b[j];
                        for (int k = 0; k < j; k++) {
                            numerator -= t.get(j, k) * result[k];
                        }
                        result[j] = numerator / t.get(j, j);
                    } else {
                        result[j] = 0.0;
                    }
                }
            }
        } else { // Upper triangle, back-substitution
            int j = n - 1;
            while ((j >= 0) && isZero[j]) {
                result[j] = 0.0;
                j--;
            } // go to the last row

            if (j >= 0) {
                result[j] = b[j] / t.get(j, j);

                for (; j >= 0; j--) {
                    if (!isZero[j]) {
                        double numerator = b[j];
                        for (int k = j + 1; k < n; k++) {
                            numerator -= t.get(k, j) * result[k];
                        }
                        result[j] = numerator / t.get(j, j);
                    } else {
                        result[j] = 0.0;
                    }
                }
            }
        }

        return result;
    }

    /**
     * One rank update of the Cholesky factorization of B matrix in BFGS updates,
     * i.e. B = LDL', and B_{new} = LDL' + coeff*(vv') where L is a unit lower
     * triangle matrix and D is a diagonal matrix, and v is a vector.<br/>
     * When coeff > 0, we use C1 algorithm, and otherwise we use C2 algorithm
     * described in ``Methods for Modifying Matrix Factorizations''
     * 
     * @param L the unit triangle matrix L
     * @param D the diagonal matrix D
     * @param v the update vector v
     * @param coeff the coeffcient of update
     * @param isFixed which variables are not to be updated
     */
    protected void updateCholeskyFactor(Matrix L, double[] D, double[] v, double coeff, boolean[] isFixed)
            throws Exception {
        double t, p, b;
        int n = v.length;
        double[] vp = new double[n];
        for (int i = 0; i < v.length; i++) {
            if (!isFixed[i]) {
                vp[i] = v[i];
            } else {
                vp[i] = 0.0;
            }
        }

        if (coeff > 0.0) {
            t = coeff;
            for (int j = 0; j < n; j++) {
                if (isFixed[j]) {
                    continue;
                }

                p = vp[j];
                double d = D[j], dbarj = d + t * p * p;
                D[j] = dbarj;

                b = p * t / dbarj;
                t *= d / dbarj;
                for (int r = j + 1; r < n; r++) {
                    if (!isFixed[r]) {
                        double l = L.get(r, j);
                        vp[r] -= p * l;
                        L.set(r, j, l + b * vp[r]);
                    } else {
                        L.set(r, j, 0.0);
                    }
                }
            }
        } else {
            double[] P = solveTriangle(L, v, true, isFixed);
            t = 0.0;
            for (int i = 0; i < n; i++) {
                if (!isFixed[i]) {
                    t += P[i] * P[i] / D[i];
                }
            }

            double sqrt = 1.0 + coeff * t;
            sqrt = (sqrt < 0.0) ? 0.0 : Math.sqrt(sqrt);

            double alpha = coeff, sigma = coeff / (1.0 + sqrt), rho, theta;

            for (int j = 0; j < n; j++) {
                if (isFixed[j]) {
                    continue;
                }

                double d = D[j];
                p = P[j] * P[j] / d;
                theta = 1.0 + sigma * p;
                t -= p;
                if (t < 0.0) {
                    t = 0.0; // Rounding error
                }

                double plus = sigma * sigma * p * t;
                if ((j < n - 1) && (plus <= m_Zero)) {
                    plus = m_Zero; // Avoid rounding error
                }
                rho = theta * theta + plus;
                D[j] = rho * d;

                if (Double.isNaN(D[j])) {
                    throw new Exception("d[" + j + "] NaN! P=" + P[j] + ",d=" + d + ",t=" + t + ",p=" + p
                            + ",sigma=" + sigma + ",sclar=" + coeff);
                }

                b = alpha * P[j] / (rho * d);
                alpha /= rho;
                rho = Math.sqrt(rho);
                double sigmaOld = sigma;
                sigma *= (1.0 + rho) / (rho * (theta + rho));
                if ((j < n - 1) && (Double.isNaN(sigma) || Double.isInfinite(sigma))) {
                    throw new Exception("sigma NaN/Inf! rho=" + rho + ",theta=" + theta + ",P[" + j + "]=" + P[j]
                            + ",p=" + p + ",d=" + d + ",t=" + t + ",oldsigma=" + sigmaOld);
                }

                for (int r = j + 1; r < n; r++) {
                    if (!isFixed[r]) {
                        double l = L.get(r, j);
                        vp[r] -= P[j] * l;
                        L.set(r, j, l + b * vp[r]);
                    } else {
                        L.set(r, j, 0.0);
                    }
                }
            }
        }
    }

    /**
     * Implements a simple dynamic array for ints.
     */
    protected class DynamicIntArray implements RevisionHandler {

        /** The int array. */
        private int[] m_Objects;

        /** The current size; */
        private int m_Size = 0;

        /** The capacity increment */
        private int m_CapacityIncrement = 1;

        /** The capacity multiplier. */
        private int m_CapacityMultiplier = 2;

        /**
         * Constructs a vector with the given capacity.
         * 
         * @param capacity the vector's initial capacity
         */
        public DynamicIntArray(int capacity) {

            m_Objects = new int[capacity];
        }

        /**
         * Adds an element to this vector. Increases its capacity if its not large
         * enough.
         * 
         * @param element the element to add
         */
        public final void addElement(int element) {

            if (m_Size == m_Objects.length) {
                int[] newObjects;
                newObjects = new int[m_CapacityMultiplier * (m_Objects.length + m_CapacityIncrement)];
                System.arraycopy(m_Objects, 0, newObjects, 0, m_Size);
                m_Objects = newObjects;
            }
            m_Objects[m_Size] = element;
            m_Size++;
        }

        /**
         * Produces a copy of this vector.
         * 
         * @return the new vector
         */
        public final Object copy() {

            DynamicIntArray copy = new DynamicIntArray(m_Objects.length);

            copy.m_Size = m_Size;
            copy.m_CapacityIncrement = m_CapacityIncrement;
            copy.m_CapacityMultiplier = m_CapacityMultiplier;
            System.arraycopy(m_Objects, 0, copy.m_Objects, 0, m_Size);
            return copy;
        }

        /**
         * Returns the element at the given position.
         * 
         * @param index the element's index
         * @return the element with the given index
         */
        public final int elementAt(int index) {

            return m_Objects[index];
        }

        /**
         * Check whether the two integer vectors equal to each other Two integer
         * vectors are equal if all the elements are the same, regardless of the
         * order of the elements
         * 
         * @param b another integer vector
         * @return whether they are equal
         */
        private boolean equal(DynamicIntArray b) {
            if ((b == null) || (size() != b.size())) {
                return false;
            }

            int size = size();

            // Only values matter, order does not matter
            int[] sorta = Utils.sort(m_Objects), sortb = Utils.sort(b.m_Objects);
            for (int j = 0; j < size; j++) {
                if (m_Objects[sorta[j]] != b.m_Objects[sortb[j]]) {
                    return false;
                }
            }

            return true;
        }

        /**
         * Deletes an element from this vector.
         * 
         * @param index the index of the element to be deleted
         */
        public final void removeElementAt(int index) {

            System.arraycopy(m_Objects, index + 1, m_Objects, index, m_Size - index - 1);
            m_Size--;
        }

        /**
         * Removes all components from this vector and sets its size to zero.
         */
        public final void removeAllElements() {

            m_Objects = new int[m_Objects.length];
            m_Size = 0;
        }

        /**
         * Returns the vector's current size.
         * 
         * @return the vector's current size
         */
        public final int size() {

            return m_Size;
        }

        /**
         * Returns the revision string.
         * 
         * @return the revision
         */
        @Override
        public String getRevision() {
            return RevisionUtils.extract("$Revision$");
        }
    }
}