weka.clusterers.MakeDensityBasedClusterer.java Source code

Java tutorial

Introduction

Here is the source code for weka.clusterers.MakeDensityBasedClusterer.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    MakeDensityBasedClusterer.java
 *    Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.clusterers;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.estimators.DiscreteEstimator;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 * <!-- globalinfo-start --> Class for wrapping a Clusterer to make it return a
 * distribution and density. Fits normal distributions and discrete
 * distributions within each cluster produced by the wrapped clusterer. Supports
 * the NumberOfClustersRequestable interface only if the wrapped Clusterer does.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -M &lt;num&gt;
 *  minimum allowable standard deviation for normal density computation 
 *  (default 1e-6)
 * </pre>
 * 
 * <pre>
 * -W &lt;clusterer name&gt;
 *  Clusterer to wrap.
 *  (default weka.clusterers.SimpleKMeans)
 * </pre>
 * 
 * <pre>
 * Options specific to clusterer weka.clusterers.SimpleKMeans:
 * </pre>
 * 
 * <pre>
 * -N &lt;num&gt;
 *  number of clusters.
 *  (default 2).
 * </pre>
 * 
 * <pre>
 * -V
 *  Display std. deviations for centroids.
 * </pre>
 * 
 * <pre>
 * -M
 *  Replace missing values with mean/mode.
 * </pre>
 * 
 * <pre>
 * -S &lt;num&gt;
 *  Random number seed.
 *  (default 10)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * Options after "--" are passed on to the base clusterer.
 * 
 * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz)
 * @author Mark Hall (mhall@cs.waikato.ac.nz)
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class MakeDensityBasedClusterer extends AbstractDensityBasedClusterer
        implements NumberOfClustersRequestable, OptionHandler, WeightedInstancesHandler {

    /** for serialization */
    static final long serialVersionUID = -5643302427972186631L;

    /** holds training instances header information */
    private Instances m_theInstances;
    /** prior probabilities for the fitted clusters */
    private double[] m_priors;
    /** normal distributions fitted to each numeric attribute in each cluster */
    private double[][][] m_modelNormal;
    /** discrete distributions fitted to each discrete attribute in each cluster */
    private DiscreteEstimator[][] m_model;
    /** default minimum standard deviation */
    private double m_minStdDev = 1e-6;
    /** The clusterer being wrapped */
    private Clusterer m_wrappedClusterer = new weka.clusterers.SimpleKMeans();
    /** globally replace missing values */
    private ReplaceMissingValues m_replaceMissing;

    /**
     * Default constructor.
     * 
     */
    public MakeDensityBasedClusterer() {
        super();
    }

    /**
     * Contructs a MakeDensityBasedClusterer wrapping a given Clusterer.
     * 
     * @param toWrap the clusterer to wrap around
     */
    public MakeDensityBasedClusterer(Clusterer toWrap) {

        setClusterer(toWrap);
    }

    /**
     * Returns a string describing classifier
     * 
     * @return a description suitable for displaying in the explorer/experimenter
     *         gui
     */
    public String globalInfo() {
        return "Class for wrapping a Clusterer to make it return a distribution "
                + "and density. Fits normal distributions and discrete distributions "
                + "within each cluster produced by the wrapped clusterer. Supports the "
                + "NumberOfClustersRequestable interface only if the wrapped Clusterer " + "does.";
    }

    /**
     * String describing default clusterer.
     * 
     * @return the default clusterer classname
     */
    protected String defaultClustererString() {
        return SimpleKMeans.class.getName();
    }

    /**
     * Set the number of clusters to generate.
     * 
     * @param n the number of clusters to generate
     * @throws Exception if the wrapped clusterer has not been set, or if the
     *           wrapped clusterer does not implement this facility.
     */
    @Override
    public void setNumClusters(int n) throws Exception {
        if (m_wrappedClusterer == null) {
            throw new Exception(
                    "Can't set the number of clusters to generate - " + "no clusterer has been set yet.");
        }
        if (!(m_wrappedClusterer instanceof NumberOfClustersRequestable)) {
            throw new Exception("Can't set the number of clusters to generate - "
                    + "wrapped clusterer does not support this facility.");
        }

        ((NumberOfClustersRequestable) m_wrappedClusterer).setNumClusters(n);
    }

    /**
     * Returns default capabilities of the clusterer (i.e., of the wrapper
     * clusterer).
     * 
     * @return the capabilities of this clusterer
     */
    @Override
    public Capabilities getCapabilities() {
        if (m_wrappedClusterer != null) {
            return m_wrappedClusterer.getCapabilities();
        }
        Capabilities result = super.getCapabilities();
        result.disableAll();
        result.enable(Capability.NO_CLASS);

        return result;
    }

    /**
     * Builds a clusterer for a set of instances.
     * 
     * @param data the instances to train the clusterer with
     * @throws Exception if the clusterer hasn't been set or something goes wrong
     */
    @Override
    public void buildClusterer(Instances data) throws Exception {
        // can clusterer handle the data?
        getCapabilities().testWithFail(data);

        m_replaceMissing = new ReplaceMissingValues();
        m_replaceMissing.setInputFormat(data);
        data = weka.filters.Filter.useFilter(data, m_replaceMissing);

        m_theInstances = new Instances(data, 0);
        if (m_wrappedClusterer == null) {
            throw new Exception("No clusterer has been set");
        }
        m_wrappedClusterer.buildClusterer(data);
        m_model = new DiscreteEstimator[m_wrappedClusterer.numberOfClusters()][data.numAttributes()];
        m_modelNormal = new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()][2];
        double[][] weights = new double[m_wrappedClusterer.numberOfClusters()][data.numAttributes()];
        m_priors = new double[m_wrappedClusterer.numberOfClusters()];
        for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) {
            m_priors[i] = 1.0; // laplace correction
            for (int j = 0; j < data.numAttributes(); j++) {
                if (data.attribute(j).isNominal()) {
                    m_model[i][j] = new DiscreteEstimator(data.attribute(j).numValues(), true);
                }
            }
        }

        Instance inst = null;

        // Compute mean, etc.
        int[] clusterIndex = new int[data.numInstances()];
        for (int i = 0; i < data.numInstances(); i++) {
            inst = data.instance(i);
            int cluster = m_wrappedClusterer.clusterInstance(inst);
            m_priors[cluster] += inst.weight();
            for (int j = 0; j < data.numAttributes(); j++) {
                if (!inst.isMissing(j)) {
                    if (data.attribute(j).isNominal()) {
                        m_model[cluster][j].addValue(inst.value(j), inst.weight());
                    } else {
                        m_modelNormal[cluster][j][0] += inst.weight() * inst.value(j);
                        weights[cluster][j] += inst.weight();
                    }
                }
            }
            clusterIndex[i] = cluster;
        }

        for (int j = 0; j < data.numAttributes(); j++) {
            if (data.attribute(j).isNumeric()) {
                for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) {
                    if (weights[i][j] > 0) {
                        m_modelNormal[i][j][0] /= weights[i][j];
                    }
                }
            }
        }

        // Compute standard deviations
        for (int i = 0; i < data.numInstances(); i++) {
            inst = data.instance(i);
            for (int j = 0; j < data.numAttributes(); j++) {
                if (!inst.isMissing(j)) {
                    if (data.attribute(j).isNumeric()) {
                        double diff = m_modelNormal[clusterIndex[i]][j][0] - inst.value(j);
                        m_modelNormal[clusterIndex[i]][j][1] += inst.weight() * diff * diff;
                    }
                }
            }
        }

        for (int j = 0; j < data.numAttributes(); j++) {
            if (data.attribute(j).isNumeric()) {
                for (int i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) {
                    if (weights[i][j] > 0) {
                        m_modelNormal[i][j][1] = Math.sqrt(m_modelNormal[i][j][1] / weights[i][j]);
                    } else if (weights[i][j] <= 0) {
                        m_modelNormal[i][j][1] = Double.MAX_VALUE;
                    }
                    if (m_modelNormal[i][j][1] <= m_minStdDev) {
                        m_modelNormal[i][j][1] = data.attributeStats(j).numericStats.stdDev;
                        if (m_modelNormal[i][j][1] <= m_minStdDev) {
                            m_modelNormal[i][j][1] = m_minStdDev;
                        }
                    }
                }
            }
        }

        Utils.normalize(m_priors);
    }

    /**
     * Returns the cluster priors.
     * 
     * @return the cluster priors
     */
    @Override
    public double[] clusterPriors() {

        double[] n = new double[m_priors.length];

        System.arraycopy(m_priors, 0, n, 0, n.length);
        return n;
    }

    /**
     * Computes the log of the conditional density (per cluster) for a given
     * instance.
     * 
     * @param inst the instance to compute the density for
     * @return an array containing the estimated densities
     * @throws Exception if the density could not be computed successfully
     */
    @Override
    public double[] logDensityPerClusterForInstance(Instance inst) throws Exception {

        int i, j;
        double logprob;
        double[] wghts = new double[m_wrappedClusterer.numberOfClusters()];

        m_replaceMissing.input(inst);
        inst = m_replaceMissing.output();

        for (i = 0; i < m_wrappedClusterer.numberOfClusters(); i++) {
            logprob = 0;
            for (j = 0; j < inst.numAttributes(); j++) {
                if (!inst.isMissing(j)) {
                    if (inst.attribute(j).isNominal()) {
                        logprob += Math.log(m_model[i][j].getProbability(inst.value(j)));
                    } else { // numeric attribute
                        logprob += logNormalDens(inst.value(j), m_modelNormal[i][j][0], m_modelNormal[i][j][1]);
                    }
                }
            }
            wghts[i] = logprob;
        }
        return wghts;
    }

    /** Constant for normal distribution. */
    private static double m_normConst = 0.5 * Math.log(2 * Math.PI);

    /**
     * Density function of normal distribution.
     * 
     * @param x input value
     * @param mean mean of distribution
     * @param stdDev standard deviation of distribution
     * @return the density
     */
    private double logNormalDens(double x, double mean, double stdDev) {

        double diff = x - mean;

        return -(diff * diff / (2 * stdDev * stdDev)) - m_normConst - Math.log(stdDev);
    }

    /**
     * Returns the number of clusters.
     * 
     * @return the number of clusters generated for a training dataset.
     * @throws Exception if number of clusters could not be returned successfully
     */
    @Override
    public int numberOfClusters() throws Exception {

        return m_wrappedClusterer.numberOfClusters();
    }

    /**
     * Returns a description of the clusterer.
     * 
     * @return a string containing a description of the clusterer
     */
    @Override
    public String toString() {
        if (m_priors == null) {
            return "No clusterer built yet!";
        }

        StringBuffer text = new StringBuffer();
        text.append("MakeDensityBasedClusterer: \n\nWrapped clusterer: " + m_wrappedClusterer.toString());

        text.append("\nFitted estimators (with ML estimates of variance):\n");

        for (int j = 0; j < m_priors.length; j++) {
            text.append("\nCluster: " + j + " Prior probability: " + Utils.doubleToString(m_priors[j], 4) + "\n\n");

            for (int i = 0; i < m_model[0].length; i++) {
                text.append("Attribute: " + m_theInstances.attribute(i).name() + "\n");

                if (m_theInstances.attribute(i).isNominal()) {
                    if (m_model[j][i] != null) {
                        text.append(m_model[j][i].toString());
                    }
                } else {
                    text.append("Normal Distribution. Mean = " + Utils.doubleToString(m_modelNormal[j][i][0], 4)
                            + " StdDev = " + Utils.doubleToString(m_modelNormal[j][i][1], 4) + "\n");
                }
            }
        }

        return text.toString();
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String clustererTipText() {
        return "the clusterer to wrap";
    }

    /**
     * Sets the clusterer to wrap.
     * 
     * @param toWrap the clusterer
     */
    public void setClusterer(Clusterer toWrap) {

        m_wrappedClusterer = toWrap;
    }

    /**
     * Gets the clusterer being wrapped.
     * 
     * @return the clusterer
     */
    public Clusterer getClusterer() {

        return m_wrappedClusterer;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String minStdDevTipText() {
        return "set minimum allowable standard deviation";
    }

    /**
     * Set the minimum value for standard deviation when calculating normal
     * density. Reducing this value can help prevent arithmetic overflow resulting
     * from multiplying large densities (arising from small standard deviations)
     * when there are many singleton or near singleton values.
     * 
     * @param m minimum value for standard deviation
     */
    public void setMinStdDev(double m) {
        m_minStdDev = m;
    }

    /**
     * Get the minimum allowable standard deviation.
     * 
     * @return the minumum allowable standard deviation
     */
    public double getMinStdDev() {
        return m_minStdDev;
    }

    /**
     * Returns an enumeration describing the available options..
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> result = new Vector<Option>();

        result.addElement(new Option(
                "\tminimum allowable standard deviation for normal density computation " + "\n\t(default 1e-6)",
                "M", 1, "-M <num>"));

        result.addElement(new Option("\tClusterer to wrap.\n" + "\t(default " + defaultClustererString() + ")", "W",
                1, "-W <clusterer name>"));

        result.addAll(Collections.list(super.listOptions()));

        if ((m_wrappedClusterer != null) && (m_wrappedClusterer instanceof OptionHandler)) {
            result.addElement(new Option("", "", 0,
                    "\nOptions specific to clusterer " + m_wrappedClusterer.getClass().getName() + ":"));
            result.addAll(Collections.list(((OptionHandler) m_wrappedClusterer).listOptions()));
        }

        return result.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -M &lt;num&gt;
     *  minimum allowable standard deviation for normal density computation 
     *  (default 1e-6)
     * </pre>
     * 
     * <pre>
     * -W &lt;clusterer name&gt;
     *  Clusterer to wrap.
     *  (default weka.clusterers.SimpleKMeans)
     * </pre>
     * 
     * <pre>
     * Options specific to clusterer weka.clusterers.SimpleKMeans:
     * </pre>
     * 
     * <pre>
     * -N &lt;num&gt;
     *  number of clusters.
     *  (default 2).
     * </pre>
     * 
     * <pre>
     * -V
     *  Display std. deviations for centroids.
     * </pre>
     * 
     * <pre>
     * -M
     *  Replace missing values with mean/mode.
     * </pre>
     * 
     * <pre>
     * -S &lt;num&gt;
     *  Random number seed.
     *  (default 10)
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        String optionString = Utils.getOption('M', options);
        if (optionString.length() != 0) {
            setMinStdDev((new Double(optionString)).doubleValue());
        } else {
            setMinStdDev(1e-6);
        }

        String wString = Utils.getOption('W', options);
        if (wString.length() == 0) {
            wString = defaultClustererString();
        }
        setClusterer(AbstractClusterer.forName(wString, Utils.partitionOptions(options)));

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the clusterer.
     * 
     * @return an array of strings suitable for passing to setOptions()
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        options.add("-M");
        options.add("" + getMinStdDev());

        if (getClusterer() != null) {
            options.add("-W");
            options.add(getClusterer().getClass().getName());
            if (m_wrappedClusterer instanceof OptionHandler) {
                String[] clustererOptions = ((OptionHandler) m_wrappedClusterer).getOptions();
                if (clustererOptions.length > 0) {
                    options.add("--");
                    Collections.addAll(options, clustererOptions);
                }
            }
        }

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv the options
     */
    public static void main(String[] argv) {
        runClusterer(new MakeDensityBasedClusterer(), argv);
    }
}