weka.classifiers.trees.LMT.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.trees.LMT.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    LMT.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.trees;

import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.trees.j48.C45ModelSelection;
import weka.classifiers.trees.j48.ModelSelection;
import weka.classifiers.trees.lmt.LMTNode;
import weka.classifiers.trees.lmt.ResidualModelSelection;
import weka.core.AdditionalMeasureProducer;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Drawable;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.filters.Filter;
import weka.filters.supervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;

/**
 * <!-- globalinfo-start --> Classifier for building 'logistic model trees',
 * which are classification trees with logistic regression functions at the
 * leaves. The algorithm can deal with binary and multi-class target variables,
 * numeric and nominal attributes and missing values.<br/>
 * <br/>
 * For more information see: <br/>
 * <br/>
 * Niels Landwehr, Mark Hall, Eibe Frank (2005). Logistic Model Trees. Machine
 * Learning. 95(1-2):161-205.<br/>
 * <br/>
 * Marc Sumner, Eibe Frank, Mark Hall: Speeding up Logistic Model Tree
 * Induction. In: 9th European Conference on Principles and Practice of
 * Knowledge Discovery in Databases, 675-683, 2005.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- technical-bibtex-start --> BibTeX:
 * 
 * <pre>
 * &#64;article{Landwehr2005,
 *    author = {Niels Landwehr and Mark Hall and Eibe Frank},
 *    journal = {Machine Learning},
 *    number = {1-2},
 *    pages = {161-205},
 *    title = {Logistic Model Trees},
 *    volume = {95},
 *    year = {2005}
 * }
 * 
 * &#64;inproceedings{Sumner2005,
 *    author = {Marc Sumner and Eibe Frank and Mark Hall},
 *    booktitle = {9th European Conference on Principles and Practice of Knowledge Discovery in Databases},
 *    pages = {675-683},
 *    publisher = {Springer},
 *    title = {Speeding up Logistic Model Tree Induction},
 *    year = {2005}
 * }
 * </pre>
 * <p/>
 * <!-- technical-bibtex-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -B
 *  Binary splits (convert nominal attributes to binary ones)
 * </pre>
 * 
 * <pre>
 * -R
 *  Split on residuals instead of class values
 * </pre>
 * 
 * <pre>
 * -C
 *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)
 * </pre>
 * 
 * <pre>
 * -P
 *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
 * </pre>
 * 
 * <pre>
 * -I &lt;numIterations&gt;
 *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
 * </pre>
 * 
 * <pre>
 * -M &lt;numInstances&gt;
 *  Set minimum number of instances at which a node can be split (default 15)
 * </pre>
 * 
 * <pre>
 * -W &lt;beta&gt;
 *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
 * </pre>
 * 
 * <pre>
 * -A
 *  The AIC is used to choose the best iteration.
 * </pre>
 * 
 * <pre>
 * -doNotMakeSplitPointActualValue
 *  Do not make split point actual value.
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Niels Landwehr
 * @author Marc Sumner
 * @version $Revision$
 */
public class LMT extends AbstractClassifier
        implements OptionHandler, AdditionalMeasureProducer, Drawable, TechnicalInformationHandler {

    /** for serialization */
    static final long serialVersionUID = -1113212459618104943L;

    /** Filter to replace missing values */
    protected ReplaceMissingValues m_replaceMissing;

    /** Filter to replace nominal attributes */
    protected NominalToBinary m_nominalToBinary;

    /** root of the logistic model tree */
    protected LMTNode m_tree;

    /**
     * use heuristic that determines the number of LogitBoost iterations only once
     * in the beginning?
     */
    protected boolean m_fastRegression;

    /** convert nominal attributes to binary ? */
    protected boolean m_convertNominal;

    /** split on residuals? */
    protected boolean m_splitOnResiduals;

    /**
     * use error on probabilties instead of misclassification for stopping
     * criterion of LogitBoost?
     */
    protected boolean m_errorOnProbabilities;

    /** minimum number of instances at which a node is considered for splitting */
    protected int m_minNumInstances;

    /** if non-zero, use fixed number of iterations for LogitBoost */
    protected int m_numBoostingIterations;

    /**
     * Threshold for trimming weights. Instances with a weight lower than this (as
     * a percentage of total weights) are not included in the regression fit.
     **/
    protected double m_weightTrimBeta;

    /** If true, the AIC is used to choose the best LogitBoost iteration */
    private boolean m_useAIC = false;

    /** Do not relocate split point to actual data value */
    private boolean m_doNotMakeSplitPointActualValue;

    /**
     * Creates an instance of LMT with standard options
     */
    public LMT() {
        m_fastRegression = true;
        m_numBoostingIterations = -1;
        m_minNumInstances = 15;
        m_weightTrimBeta = 0;
        m_useAIC = false;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();
        result.disableAll();

        // attributes
        result.enable(Capability.NOMINAL_ATTRIBUTES);
        result.enable(Capability.NUMERIC_ATTRIBUTES);
        result.enable(Capability.DATE_ATTRIBUTES);
        result.enable(Capability.MISSING_VALUES);

        // class
        result.enable(Capability.NOMINAL_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Builds the classifier.
     * 
     * @param data the data to train with
     * @throws Exception if classifier can't be built successfully
     */
    @Override
    public void buildClassifier(Instances data) throws Exception {

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // remove instances with missing class
        Instances filteredData = new Instances(data);
        filteredData.deleteWithMissingClass();

        // replace missing values
        m_replaceMissing = new ReplaceMissingValues();
        m_replaceMissing.setInputFormat(filteredData);
        filteredData = Filter.useFilter(filteredData, m_replaceMissing);

        // possibly convert nominal attributes globally
        m_nominalToBinary = new NominalToBinary();
        m_nominalToBinary.setInputFormat(filteredData);
        if (m_convertNominal) {
            filteredData = Filter.useFilter(filteredData, m_nominalToBinary);
        }

        int minNumInstances = 2;

        // create ModelSelection object, either for splits on the residuals or for
        // splits on the class value
        ModelSelection modSelection;
        if (m_splitOnResiduals) {
            modSelection = new ResidualModelSelection(minNumInstances);
        } else {
            modSelection = new C45ModelSelection(minNumInstances, filteredData, true,
                    m_doNotMakeSplitPointActualValue);
        }

        // create tree root
        m_tree = new LMTNode(modSelection, m_numBoostingIterations, m_fastRegression, m_errorOnProbabilities,
                m_minNumInstances, m_weightTrimBeta, m_useAIC, m_nominalToBinary, m_numDecimalPlaces);
        // build tree
        m_tree.buildClassifier(filteredData);

        if (modSelection instanceof C45ModelSelection) {
            ((C45ModelSelection) modSelection).cleanup();
        }
    }

    /**
     * Returns class probabilities for an instance.
     * 
     * @param instance the instance to compute the distribution for
     * @return the class probabilities
     * @throws Exception if distribution can't be computed successfully
     */
    @Override
    public double[] distributionForInstance(Instance instance) throws Exception {

        // replace missing values
        m_replaceMissing.input(instance);
        instance = m_replaceMissing.output();

        // possibly convert nominal attributes
        if (m_convertNominal) {
            m_nominalToBinary.input(instance);
            instance = m_nominalToBinary.output();
        }

        return m_tree.distributionForInstance(instance);
    }

    /**
     * Classifies an instance.
     * 
     * @param instance the instance to classify
     * @return the classification
     * @throws Exception if instance can't be classified successfully
     */
    @Override
    public double classifyInstance(Instance instance) throws Exception {

        double maxProb = -1;
        int maxIndex = 0;

        // classify by maximum probability
        double[] probs = distributionForInstance(instance);
        for (int j = 0; j < instance.numClasses(); j++) {
            if (Utils.gr(probs[j], maxProb)) {
                maxIndex = j;
                maxProb = probs[j];
            }
        }
        return maxIndex;
    }

    /**
     * Returns a description of the classifier.
     * 
     * @return a string representation of the classifier
     */
    @Override
    public String toString() {
        if (m_tree != null) {
            return "Logistic model tree \n------------------\n" + m_tree.toString();
        } else {
            return "No tree build";
        }
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(9);

        newVector.addElement(
                new Option("\tBinary splits (convert nominal attributes to binary ones)", "B", 0, "-B"));

        newVector.addElement(new Option("\tSplit on residuals instead of class values", "R", 0, "-R"));

        newVector.addElement(new Option(
                "\tUse cross-validation for boosting at all nodes (i.e., disable heuristic)", "C", 0, "-C"));

        newVector.addElement(new Option("\tUse error on probabilities instead of misclassification error "
                + "for stopping criterion of LogitBoost.", "P", 0, "-P"));

        newVector.addElement(new Option(
                "\tSet fixed number of iterations for LogitBoost (instead of using " + "cross-validation)", "I", 1,
                "-I <numIterations>"));

        newVector.addElement(
                new Option("\tSet minimum number of instances at which a node can be split (default 15)", "M", 1,
                        "-M <numInstances>"));

        newVector.addElement(new Option(
                "\tSet beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.", "W", 1,
                "-W <beta>"));

        newVector.addElement(new Option("\tThe AIC is used to choose the best iteration.", "A", 0, "-A"));
        newVector.addElement(new Option("\tDo not make split point actual value.",
                "-doNotMakeSplitPointActualValue", 0, "-doNotMakeSplitPointActualValue"));

        newVector.addAll(Collections.list(super.listOptions()));

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -B
     *  Binary splits (convert nominal attributes to binary ones)
     * </pre>
     * 
     * <pre>
     * -R
     *  Split on residuals instead of class values
     * </pre>
     * 
     * <pre>
     * -C
     *  Use cross-validation for boosting at all nodes (i.e., disable heuristic)
     * </pre>
     * 
     * <pre>
     * -P
     *  Use error on probabilities instead of misclassification error for stopping criterion of LogitBoost.
     * </pre>
     * 
     * <pre>
     * -I &lt;numIterations&gt;
     *  Set fixed number of iterations for LogitBoost (instead of using cross-validation)
     * </pre>
     * 
     * <pre>
     * -M &lt;numInstances&gt;
     *  Set minimum number of instances at which a node can be split (default 15)
     * </pre>
     * 
     * <pre>
     * -W &lt;beta&gt;
     *  Set beta for weight trimming for LogitBoost. Set to 0 (default) for no weight trimming.
     * </pre>
     * 
     * <pre>
     * -A
     *  The AIC is used to choose the best iteration.
     * </pre>
     * 
     * <pre>
     * -doNotMakeSplitPointActualValue
     *  Do not make split point actual value.
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {

        setConvertNominal(Utils.getFlag('B', options));
        setSplitOnResiduals(Utils.getFlag('R', options));
        setFastRegression(!Utils.getFlag('C', options));
        setErrorOnProbabilities(Utils.getFlag('P', options));

        String optionString = Utils.getOption('I', options);
        if (optionString.length() != 0) {
            setNumBoostingIterations((new Integer(optionString)).intValue());
        }

        optionString = Utils.getOption('M', options);
        if (optionString.length() != 0) {
            setMinNumInstances((new Integer(optionString)).intValue());
        }

        optionString = Utils.getOption('W', options);
        if (optionString.length() != 0) {
            setWeightTrimBeta((new Double(optionString)).doubleValue());
        }

        setUseAIC(Utils.getFlag('A', options));
        m_doNotMakeSplitPointActualValue = Utils.getFlag("doNotMakeSplitPointActualValue", options);

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);

    }

    /**
     * Gets the current settings of the Classifier.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        Vector<String> options = new Vector<String>();

        if (getConvertNominal()) {
            options.add("-B");
        }

        if (getSplitOnResiduals()) {
            options.add("-R");
        }

        if (!getFastRegression()) {
            options.add("-C");
        }

        if (getErrorOnProbabilities()) {
            options.add("-P");
        }

        options.add("-I");
        options.add("" + getNumBoostingIterations());

        options.add("-M");
        options.add("" + getMinNumInstances());

        options.add("-W");
        options.add("" + getWeightTrimBeta());

        if (getUseAIC()) {
            options.add("-A");
        }

        if (m_doNotMakeSplitPointActualValue) {
            options.add("-doNotMakeSplitPointActualValue");
        }

        Collections.addAll(options, super.getOptions());

        return options.toArray(new String[0]);
    }

    /**
     * Get the value of weightTrimBeta.
     */
    public double getWeightTrimBeta() {
        return m_weightTrimBeta;
    }

    /**
     * Get the value of useAIC.
     * 
     * @return Value of useAIC.
     */
    public boolean getUseAIC() {
        return m_useAIC;
    }

    /**
     * Set the value of weightTrimBeta.
     */
    public void setWeightTrimBeta(double n) {
        m_weightTrimBeta = n;
    }

    /**
     * Set the value of useAIC.
     * 
     * @param c Value to assign to useAIC.
     */
    public void setUseAIC(boolean c) {
        m_useAIC = c;
    }

    /**
     * Get the value of convertNominal.
     * 
     * @return Value of convertNominal.
     */
    public boolean getConvertNominal() {
        return m_convertNominal;
    }

    /**
     * Get the value of splitOnResiduals.
     * 
     * @return Value of splitOnResiduals.
     */
    public boolean getSplitOnResiduals() {
        return m_splitOnResiduals;
    }

    /**
     * Get the value of fastRegression.
     * 
     * @return Value of fastRegression.
     */
    public boolean getFastRegression() {
        return m_fastRegression;
    }

    /**
     * Get the value of errorOnProbabilities.
     * 
     * @return Value of errorOnProbabilities.
     */
    public boolean getErrorOnProbabilities() {
        return m_errorOnProbabilities;
    }

    /**
     * Get the value of numBoostingIterations.
     * 
     * @return Value of numBoostingIterations.
     */
    public int getNumBoostingIterations() {
        return m_numBoostingIterations;
    }

    /**
     * Get the value of minNumInstances.
     * 
     * @return Value of minNumInstances.
     */
    public int getMinNumInstances() {
        return m_minNumInstances;
    }

    /**
     * Set the value of convertNominal.
     * 
     * @param c Value to assign to convertNominal.
     */
    public void setConvertNominal(boolean c) {
        m_convertNominal = c;
    }

    /**
     * Set the value of splitOnResiduals.
     * 
     * @param c Value to assign to splitOnResiduals.
     */
    public void setSplitOnResiduals(boolean c) {
        m_splitOnResiduals = c;
    }

    /**
     * Set the value of fastRegression.
     * 
     * @param c Value to assign to fastRegression.
     */
    public void setFastRegression(boolean c) {
        m_fastRegression = c;
    }

    /**
     * Set the value of errorOnProbabilities.
     * 
     * @param c Value to assign to errorOnProbabilities.
     */
    public void setErrorOnProbabilities(boolean c) {
        m_errorOnProbabilities = c;
    }

    /**
     * Set the value of numBoostingIterations.
     * 
     * @param c Value to assign to numBoostingIterations.
     */
    public void setNumBoostingIterations(int c) {
        m_numBoostingIterations = c;
    }

    /**
     * Set the value of minNumInstances.
     * 
     * @param c Value to assign to minNumInstances.
     */
    public void setMinNumInstances(int c) {
        m_minNumInstances = c;
    }

    /**
     * Returns the type of graph this classifier represents.
     * 
     * @return Drawable.TREE
     */
    @Override
    public int graphType() {
        return Drawable.TREE;
    }

    /**
     * Returns graph describing the tree.
     * 
     * @return the graph describing the tree
     * @throws Exception if graph can't be computed
     */
    @Override
    public String graph() throws Exception {

        return m_tree.graph();
    }

    /**
     * Returns the size of the tree
     * 
     * @return the size of the tree
     */
    public int measureTreeSize() {
        return m_tree.numNodes();
    }

    /**
     * Returns the number of leaves in the tree
     * 
     * @return the number of leaves in the tree
     */
    public int measureNumLeaves() {
        return m_tree.numLeaves();
    }

    /**
     * Returns an enumeration of the additional measure names
     * 
     * @return an enumeration of the measure names
     */
    @Override
    public Enumeration<String> enumerateMeasures() {
        Vector<String> newVector = new Vector<String>(2);
        newVector.addElement("measureTreeSize");
        newVector.addElement("measureNumLeaves");

        return newVector.elements();
    }

    /**
     * Returns the value of the named measure
     * 
     * @param additionalMeasureName the name of the measure to query for its value
     * @return the value of the named measure
     * @throws IllegalArgumentException if the named measure is not supported
     */
    @Override
    public double getMeasure(String additionalMeasureName) {
        if (additionalMeasureName.compareToIgnoreCase("measureTreeSize") == 0) {
            return measureTreeSize();
        } else if (additionalMeasureName.compareToIgnoreCase("measureNumLeaves") == 0) {
            return measureNumLeaves();
        } else {
            throw new IllegalArgumentException(additionalMeasureName + " not supported (LMT)");
        }
    }

    /**
     * Returns a string describing classifier
     * 
     * @return a description suitable for displaying in the explorer/experimenter
     *         gui
     */
    public String globalInfo() {
        return "Classifier for building 'logistic model trees', which are classification trees with "
                + "logistic regression functions at the leaves. The algorithm can deal with binary and multi-class "
                + "target variables, numeric and nominal attributes and missing values.\n\n"
                + "For more information see: \n\n" + getTechnicalInformation().toString();
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;
        TechnicalInformation additional;

        result = new TechnicalInformation(Type.ARTICLE);
        result.setValue(Field.AUTHOR, "Niels Landwehr and Mark Hall and Eibe Frank");
        result.setValue(Field.TITLE, "Logistic Model Trees");
        result.setValue(Field.JOURNAL, "Machine Learning");
        result.setValue(Field.YEAR, "2005");
        result.setValue(Field.VOLUME, "95");
        result.setValue(Field.PAGES, "161-205");
        result.setValue(Field.NUMBER, "1-2");

        additional = result.add(Type.INPROCEEDINGS);
        additional.setValue(Field.AUTHOR, "Marc Sumner and Eibe Frank and Mark Hall");
        additional.setValue(Field.TITLE, "Speeding up Logistic Model Tree Induction");
        additional.setValue(Field.BOOKTITLE,
                "9th European Conference on Principles and Practice of Knowledge Discovery in Databases");
        additional.setValue(Field.YEAR, "2005");
        additional.setValue(Field.PAGES, "675-683");
        additional.setValue(Field.PUBLISHER, "Springer");

        return result;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String convertNominalTipText() {
        return "Convert all nominal attributes to binary ones before building the tree. "
                + "This means that all splits in the final tree will be binary.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String splitOnResidualsTipText() {
        return "Set splitting criterion based on the residuals of LogitBoost. "
                + "There are two possible splitting criteria for LMT: the default is to use the C4.5 "
                + "splitting criterion that uses information gain on the class variable. The other splitting "
                + "criterion tries to improve the purity in the residuals produces when fitting the logistic "
                + "regression functions. The choice of the splitting criterion does not usually affect classification "
                + "accuracy much, but can produce different trees.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String fastRegressionTipText() {
        return "Use heuristic that avoids cross-validating the number of Logit-Boost iterations at every node. "
                + "When fitting the logistic regression functions at a node, LMT has to determine the number of LogitBoost "
                + "iterations to run. Originally, this number was cross-validated at every node in the tree. "
                + "To save time, this heuristic cross-validates the number only once and then uses that number at every "
                + "node in the tree. Usually this does not decrease accuracy but improves runtime considerably.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String errorOnProbabilitiesTipText() {
        return "Minimize error on probabilities instead of misclassification error when cross-validating the number "
                + "of LogitBoost iterations. When set, the number of LogitBoost iterations is chosen that minimizes "
                + "the root mean squared error instead of the misclassification error.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String numBoostingIterationsTipText() {
        return "Set a fixed number of iterations for LogitBoost. If >= 0, this sets a fixed number of LogitBoost "
                + "iterations that is used everywhere in the tree. If < 0, the number is cross-validated.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String minNumInstancesTipText() {
        return "Set the minimum number of instances at which a node is considered for splitting. "
                + "The default value is 15.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String weightTrimBetaTipText() {
        return "Set the beta value used for weight trimming in LogitBoost. "
                + "Only instances carrying (1 - beta)% of the weight from previous iteration "
                + "are used in the next iteration. Set to 0 for no weight trimming. " + "The default value is 0.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String useAICTipText() {
        return "The AIC is used to determine when to stop LogitBoost iterations. "
                + "The default is not to use AIC.";
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String doNotMakeSplitPointActualValueTipText() {
        return "If true, the split point is not relocated to an actual data value."
                + " This can yield substantial speed-ups for large datasets with numeric attributes.";
    }

    /**
     * Returns the tip text for this property
     *
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String numDecimalPlacesTipText() {
        return "The number of decimal places to be used for the output of coefficients.";
    }

    /**
     * Gets the value of doNotMakeSplitPointActualValue.
     * 
     * @return the value
     */
    public boolean getDoNotMakeSplitPointActualValue() {
        return m_doNotMakeSplitPointActualValue;
    }

    /**
     * Sets the value of doNotMakeSplitPointActualValue.
     * 
     * @param m_doNotMakeSplitPointActualValue the value to set
     */
    public void setDoNotMakeSplitPointActualValue(boolean m_doNotMakeSplitPointActualValue) {
        this.m_doNotMakeSplitPointActualValue = m_doNotMakeSplitPointActualValue;
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class
     * 
     * @param argv the commandline options
     */
    public static void main(String[] argv) {
        runClassifier(new LMT(), argv);
    }
}