Java tutorial
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* * ZeroR.java * Copyright (C) 1999 Eibe Frank * */ package weka.classifiers.rules; import weka.classifiers.Classifier; import weka.classifiers.Evaluation; import java.io.*; import java.util.*; import weka.core.*; /** * Class for building and using a 0-R classifier. Predicts the mean * (for a numeric class) or the mode (for a nominal class). * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.11 $ */ public class ZeroR extends Classifier implements WeightedInstancesHandler { /** The class value 0R predicts. */ private double m_ClassValue; /** The number of instances in each class (null if class numeric). */ private double[] m_Counts; /** The class attribute. */ private Attribute m_Class; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a 0-R classifier. Predicts the mean " + "(for a numeric class) or the mode (for a nominal class)."; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @exception Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { double sumOfWeights = 0; m_Class = instances.classAttribute(); m_ClassValue = 0; switch (instances.classAttribute().type()) { case Attribute.NUMERIC: m_Counts = null; break; case Attribute.NOMINAL: m_Counts = new double[instances.numClasses()]; for (int i = 0; i < m_Counts.length; i++) { m_Counts[i] = 1; } sumOfWeights = instances.numClasses(); break; default: throw new Exception("ZeroR can only handle nominal and numeric class" + " attributes."); } Enumeration enu = instances.enumerateInstances(); while (enu.hasMoreElements()) { Instance instance = (Instance) enu.nextElement(); if (!instance.classIsMissing()) { if (instances.classAttribute().isNominal()) { m_Counts[(int) instance.classValue()] += instance.weight(); } else { m_ClassValue += instance.weight() * instance.classValue(); } sumOfWeights += instance.weight(); } } if (instances.classAttribute().isNumeric()) { if (Utils.gr(sumOfWeights, 0)) { m_ClassValue /= sumOfWeights; } } else { m_ClassValue = Utils.maxIndex(m_Counts); Utils.normalize(m_Counts, sumOfWeights); } } /** * Classifies a given instance. * * @param instance the instance to be classified * @return index of the predicted class */ public double classifyInstance(Instance instance) { return m_ClassValue; } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if class is numeric */ public double[] distributionForInstance(Instance instance) throws Exception { if (m_Counts == null) { double[] result = new double[1]; result[0] = m_ClassValue; return result; } else { return (double[]) m_Counts.clone(); } } /** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ public String toString() { if (m_Class == null) { return "ZeroR: No model built yet."; } if (m_Counts == null) { return "ZeroR predicts class value: " + m_ClassValue; } else { return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue); } } /** * Main method for testing this class. * * @param argv the options */ public static void main(String[] argv) { try { System.out.println(Evaluation.evaluateModel(new ZeroR(), argv)); } catch (Exception e) { System.err.println(e.getMessage()); } } }