Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * M5Rules.java * Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand */ package weka.classifiers.rules; import weka.classifiers.trees.m5.M5Base; import weka.core.RevisionUtils; import weka.core.TechnicalInformation; import weka.core.TechnicalInformation.Field; import weka.core.TechnicalInformation.Type; import weka.core.TechnicalInformationHandler; /** <!-- globalinfo-start --> * Generates a decision list for regression problems using separate-and-conquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.<br/> * <br/> * For more information see:<br/> * <br/> * Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.<br/> * <br/> * Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.<br/> * <br/> * Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Holmes1999, * author = {Geoffrey Holmes and Mark Hall and Eibe Frank}, * booktitle = {Twelfth Australian Joint Conference on Artificial Intelligence}, * pages = {1-12}, * publisher = {Springer}, * title = {Generating Rule Sets from Model Trees}, * year = {1999} * } * * @inproceedings{Quinlan1992, * address = {Singapore}, * author = {Ross J. Quinlan}, * booktitle = {5th Australian Joint Conference on Artificial Intelligence}, * pages = {343-348}, * publisher = {World Scientific}, * title = {Learning with Continuous Classes}, * year = {1992} * } * * @inproceedings{Wang1997, * author = {Y. Wang and I. H. Witten}, * booktitle = {Poster papers of the 9th European Conference on Machine Learning}, * publisher = {Springer}, * title = {Induction of model trees for predicting continuous classes}, * year = {1997} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N * Use unpruned tree/rules</pre> * * <pre> -U * Use unsmoothed predictions</pre> * * <pre> -R * Build regression tree/rule rather than a model tree/rule</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf * (default 4)</pre> * <!-- options-end --> * * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> * @version $Revision$ */ public class M5Rules extends M5Base implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -1746114858746563180L; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Generates a decision list for regression problems using " + "separate-and-conquer. In each iteration it builds a " + "model tree using M5 and makes the \"best\" " + "leaf into a rule.\n\n" + "For more information see:\n\n" + getTechnicalInformation().toString(); } /** * Constructor */ public M5Rules() { super(); setGenerateRules(true); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Geoffrey Holmes and Mark Hall and Eibe Frank"); result.setValue(Field.TITLE, "Generating Rule Sets from Model Trees"); result.setValue(Field.BOOKTITLE, "Twelfth Australian Joint Conference on Artificial Intelligence"); result.setValue(Field.YEAR, "1999"); result.setValue(Field.PAGES, "1-12"); result.setValue(Field.PUBLISHER, "Springer"); result.add(super.getTechnicalInformation()); return result; } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } /** * Main method by which this class can be tested * * @param args an array of options */ public static void main(String[] args) { runClassifier(new M5Rules(), args); } }