weka.classifiers.misc.InputMappedClassifier.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.misc.InputMappedClassifier.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    InputMappedClassifier.java
 *    Copyright (C) 2010-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.misc;

import java.io.Serializable;
import java.util.Collections;
import java.util.Enumeration;
import java.util.Vector;

import weka.classifiers.Classifier;
import weka.classifiers.SingleClassifierEnhancer;
import weka.core.AdditionalMeasureProducer;
import weka.core.Attribute;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.DenseInstance;
import weka.core.Drawable;
import weka.core.Environment;
import weka.core.EnvironmentHandler;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SerializationHelper;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;

/**
 * <!-- globalinfo-start --> Wrapper classifier that addresses incompatible
 * training and test data by building a mapping between the training data that a
 * classifier has been built with and the incoming test instances' structure.
 * Model attributes that are not found in the incoming instances receive missing
 * values, so do incoming nominal attribute values that the classifier has not
 * seen before. A new classifier can be trained or an existing one loaded from a
 * file.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -I
 *  Ignore case when matching attribute names and nominal values.
 * </pre>
 * 
 * <pre>
 * -M
 *  Suppress the output of the mapping report.
 * </pre>
 * 
 * <pre>
 * -trim
 *  Trim white space from either end of names before matching.
 * </pre>
 * 
 * <pre>
 * -L &lt;path to model to load&gt;
 *  Path to a model to load. If set, this model
 *  will be used for prediction and any base classifier
 *  specification will be ignored. Environment variables
 *  may be used in the path (e.g. ${HOME}/myModel.model)
 * </pre>
 * 
 * <pre>
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * </pre>
 * 
 * <pre>
 * -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.rules.ZeroR)
 * </pre>
 * 
 * <pre>
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre>
 * -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @author Mark Hall (mhall{[at]}pentaho{[dot]}com)
 * @version $Revision$
 * 
 */
public class InputMappedClassifier extends SingleClassifierEnhancer implements Serializable, OptionHandler,
        Drawable, WeightedInstancesHandler, AdditionalMeasureProducer, EnvironmentHandler {

    /** For serialization */
    private static final long serialVersionUID = 4901630631723287761L;

    /** The path to the serialized model to use (if any) */
    protected String m_modelPath = "";

    /** The header of the last known set of incoming test instances, without any string or relational values */
    protected transient Instances m_inputHeader;

    /** The instances structure used to train the classifier with */
    protected Instances m_modelHeader;

    /** Handle any environment variables used in the model path */
    protected transient Environment m_env;

    /** Map from model attributes to incoming attributes */
    protected transient int[] m_attributeMap;

    protected transient int[] m_attributeStatus;

    /**
     * For each model attribute, map from incoming nominal values to model nominal
     * values
     */
    protected transient int[][] m_nominalValueMap;

    /** Trim white space from both ends of attribute names and nominal values? */
    protected boolean m_trim = true;

    /** Ignore case when matching attribute names and nominal values? */
    protected boolean m_ignoreCase = true;

    /** Dont output mapping report if set to true */
    protected boolean m_suppressMappingReport = false;

    /**
     * If true, then a call to buildClassifier() will not overwrite any test
     * structure that has been recorded with the current training structure. This
     * is useful for getting a correct mapping report output in toString() after
     * buildClassifier has been called and before any test instance has been seen.
     * Test structure and mapping will get reset if a test instance is received
     * whose structure does not match the recorded test structure.
     */
    protected boolean m_initialTestStructureKnown = false;

    /** Holds values for instances constructed for prediction */
    protected double[] m_vals;

    /**
     * Returns a string describing this classifier
     * 
     * @return a description of the classifier suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String globalInfo() {
        return "Wrapper classifier that addresses incompatible training and test "
                + "data by building a mapping between the training data that "
                + "a classifier has been built with and the incoming test instances' "
                + "structure. Model attributes that are not found in the incoming "
                + "instances receive missing values, so do incoming nominal attribute "
                + "values that the classifier has not seen before. A new classifier "
                + "can be trained or an existing one loaded from a file.";
    }

    /**
     * Set the environment variables to use
     * 
     * @param env the environment variables to use
     */
    @Override
    public void setEnvironment(Environment env) {
        m_env = env;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String ignoreCaseForNamesTipText() {
        return "Ignore case when matching attribute names and nomina values.";
    }

    /**
     * Set whether to ignore case when matching attribute names and nominal
     * values.
     * 
     * @param ignore true if case is to be ignored
     */
    public void setIgnoreCaseForNames(boolean ignore) {
        m_ignoreCase = ignore;
    }

    /**
     * Get whether to ignore case when matching attribute names and nominal
     * values.
     * 
     * @return true if case is to be ignored.
     */
    public boolean getIgnoreCaseForNames() {
        return m_ignoreCase;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String trimTipText() {
        return "Trim white space from each end of attribute names and " + "nominal values before matching.";
    }

    /**
     * Set whether to trim white space from each end of names before matching.
     * 
     * @param trim true to trim white space.
     */
    public void setTrim(boolean trim) {
        m_trim = trim;
    }

    /**
     * Get whether to trim white space from each end of names before matching.
     * 
     * @return true if white space is to be trimmed.
     */
    public boolean getTrim() {
        return m_trim;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String suppressMappingReportTipText() {
        return "Don't output a report of model-to-input mappings.";
    }

    /**
     * Set whether to suppress output the report of model to input mappings.
     * 
     * @param suppress true to suppress this output.
     */
    public void setSuppressMappingReport(boolean suppress) {
        m_suppressMappingReport = suppress;
    }

    /**
     * Get whether to suppress output the report of model to input mappings.
     * 
     * @return true if this output is to be suppressed.
     */
    public boolean getSuppressMappingReport() {
        return m_suppressMappingReport;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String modelPathTipText() {
        return "Set the path from which to load a model. " + "Loading occurs when the first test instance "
                + "is received. Environment variables can be used in the " + "supplied path.";
    }

    /**
     * Set the path from which to load a model. Loading occurs when the first test
     * instance is received or getModelHeader() is called programatically.
     * Environment variables can be used in the supplied path - e.g.
     * ${HOME}/myModel.model.
     * 
     * @param modelPath the path to the model to load.
     * @throws Exception if a problem occurs during loading.
     */
    public void setModelPath(String modelPath) throws Exception {
        if (m_env == null) {
            m_env = Environment.getSystemWide();
        }

        m_modelPath = modelPath;

        // loadModel(modelPath);
    }

    /**
     * Get the path used for loading a model.
     * 
     * @return the path used for loading a model.
     */
    public String getModelPath() {
        return m_modelPath;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();

        result.disable(Capability.RELATIONAL_ATTRIBUTES);

        return result;
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -I
     *  Ignore case when matching attribute names and nominal values.
     * </pre>
     * 
     * <pre>
     * -M
     *  Suppress the output of the mapping report.
     * </pre>
     * 
     * <pre>
     * -trim
     *  Trim white space from either end of names before matching.
     * </pre>
     * 
     * <pre>
     * -L &lt;path to model to load&gt;
     *  Path to a model to load. If set, this model
     *  will be used for prediction and any base classifier
     *  specification will be ignored. Environment variables
     *  may be used in the path (e.g. ${HOME}/myModel.model)
     * </pre>
     * 
     * <pre>
     * -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <pre>
     * -W
     *  Full name of base classifier.
     *  (default: weka.classifiers.rules.ZeroR)
     * </pre>
     * 
     * <pre>
     * Options specific to classifier weka.classifiers.rules.ZeroR:
     * </pre>
     * 
     * <pre>
     * -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {
        Vector<Option> newVector = new Vector<Option>(4);

        newVector.addElement(
                new Option("\tIgnore case when matching attribute " + "names and nominal values.", "I", 0, "-I"));
        newVector.addElement(new Option("\tSuppress the output of the mapping report.", "M", 0, "-M"));
        newVector.addElement(new Option("\tTrim white space from either end of names " + "before matching.", "trim",
                0, "-trim"));
        newVector.addElement(new Option(
                "\tPath to a model to load. If set, this model"
                        + "\n\twill be used for prediction and any base classifier"
                        + "\n\tspecification will be ignored. Environment variables"
                        + "\n\tmay be used in the path (e.g. ${HOME}/myModel.model)",
                "L", 1, "-L <path to model to load>"));

        newVector.addAll(Collections.list(super.listOptions()));

        return newVector.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -I
     *  Ignore case when matching attribute names and nominal values.
     * </pre>
     * 
     * <pre>
     * -M
     *  Suppress the output of the mapping report.
     * </pre>
     * 
     * <pre>
     * -trim
     *  Trim white space from either end of names before matching.
     * </pre>
     * 
     * <pre>
     * -L &lt;path to model to load&gt;
     *  Path to a model to load. If set, this model
     *  will be used for prediction and any base classifier
     *  specification will be ignored. Environment variables
     *  may be used in the path (e.g. ${HOME}/myModel.model)
     * </pre>
     * 
     * <pre>
     * -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <pre>
     * -W
     *  Full name of base classifier.
     *  (default: weka.classifiers.rules.ZeroR)
     * </pre>
     * 
     * <pre>
     * Options specific to classifier weka.classifiers.rules.ZeroR:
     * </pre>
     * 
     * <pre>
     * -D
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * Options after -- are passed to the designated classifier.
     * <p>
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        setIgnoreCaseForNames(Utils.getFlag('I', options));
        setSuppressMappingReport(Utils.getFlag('M', options));
        setTrim(Utils.getFlag("trim", options));

        String modelPath = Utils.getOption('L', options);
        if (modelPath.length() > 0) {
            setModelPath(modelPath);
        }

        super.setOptions(options);
    }

    /**
     * Gets the current settings of the Classifier.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {
        String[] superOptions = super.getOptions();
        String[] options = new String[superOptions.length + 5];

        int current = 0;
        if (getIgnoreCaseForNames()) {
            options[current++] = "-I";
        }
        if (getSuppressMappingReport()) {
            options[current++] = "-M";
        }
        if (getTrim()) {
            options[current++] = "-trim";
        }

        if (getModelPath() != null && getModelPath().length() > 0) {
            options[current++] = "-L";
            options[current++] = getModelPath();
        }

        System.arraycopy(superOptions, 0, options, current, superOptions.length);

        current += superOptions.length;
        while (current < options.length) {
            options[current++] = "";
        }
        return options;
    }

    /**
     * Set the test structure (if known in advance) that we are likely to see. If
     * set, then a call to buildClassifier() will not overwrite any test structure
     * that has been recorded with the current training structure. This is useful
     * for getting a correct mapping report output in toString() after
     * buildClassifier has been called and before any test instance has been seen.
     * Test structure and mapping will get reset if a test instance is received
     * whose structure does not match the recorded test structure.
     * 
     * @param testStructure the structure of the test instances that we are likely
     *          to see (if known in advance)
     */
    public void setTestStructure(Instances testStructure) {
        m_inputHeader = testStructure;
        m_initialTestStructureKnown = true;
    }

    /**
     * Set the structure of the data used to create the model. This method is
     * useful for clients who have an existing in-memory model that they'd like to
     * wrap in the InputMappedClassifier
     * 
     * @param modelHeader the structure of the data used to build the wrapped
     *          model
     */
    public void setModelHeader(Instances modelHeader) {
        m_modelHeader = modelHeader;
    }

    private void loadModel(String modelPath) throws Exception {
        if (modelPath != null && modelPath.length() > 0) {
            try {
                if (m_env == null) {
                    m_env = Environment.getSystemWide();
                }

                modelPath = m_env.substitute(modelPath);
            } catch (Exception ex) {
                // ignore any problems
            }

            try {
                Object[] modelAndHeader = SerializationHelper.readAll(modelPath);

                if (modelAndHeader.length != 2) {
                    throw new Exception("[InputMappedClassifier] serialized model file "
                            + "does not seem to contain both a model and "
                            + "the instances header used in training it!");
                } else {
                    setClassifier((Classifier) modelAndHeader[0]);
                    m_modelHeader = (Instances) modelAndHeader[1];
                }
            } catch (Exception ex) {
                ex.printStackTrace();
            }
        }
    }

    /**
     * Build the classifier
     * 
     * @param data the training data to be used for generating the bagged
     *          classifier.
     * @throws Exception if the classifier could not be built successfully
     */
    @Override
    public void buildClassifier(Instances data) throws Exception {
        if (!m_initialTestStructureKnown) {
            m_inputHeader = data.stringFreeStructure();
        }

        m_attributeMap = null;

        if (m_modelPath != null && m_modelPath.length() > 0) {
            return; // Don't build a classifier if a path has been specified
        }

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        m_Classifier.buildClassifier(data);
        // m_loadedClassifier = m_Classifier;
        m_modelHeader = data.stringFreeStructure();
    }

    private boolean stringMatch(String one, String two) {
        if (m_trim) {
            one = one.trim();
            two = two.trim();
        }

        if (m_ignoreCase) {
            return one.equalsIgnoreCase(two);
        } else {
            return one.equals(two);
        }
    }

    /**
     * Helper method to pad/truncate strings
     * 
     * @param s String to modify
     * @param pad character to pad with
     * @param len length of final string
     * @return final String
     */
    private String getFixedLengthString(String s, char pad, int len) {

        String padded = null;
        if (len <= 0) {
            return s;
        }
        // truncate?
        if (s.length() >= len) {
            return s.substring(0, len);
        } else {
            char[] buf = new char[len - s.length()];
            for (int j = 0; j < len - s.length(); j++) {
                buf[j] = pad;
            }
            padded = s + new String(buf);
        }

        return padded;
    }

    private StringBuffer createMappingReport() {
        StringBuffer result = new StringBuffer();
        result.append("Attribute mappings:\n\n");

        int maxLength = 0;
        for (int i = 0; i < m_modelHeader.numAttributes(); i++) {
            if (m_modelHeader.attribute(i).name().length() > maxLength) {
                maxLength = m_modelHeader.attribute(i).name().length();
            }
        }
        maxLength += 12;

        int minLength = 16;
        String headerS = "Model attributes";
        String sep = "----------------";

        if (maxLength < minLength) {
            maxLength = minLength;
        }

        headerS = getFixedLengthString(headerS, ' ', maxLength);
        sep = getFixedLengthString(sep, '-', maxLength);
        sep += "\t    ----------------\n";
        headerS += "\t    Incoming attributes\n";
        result.append(headerS);
        result.append(sep);

        for (int i = 0; i < m_modelHeader.numAttributes(); i++) {
            Attribute temp = m_modelHeader.attribute(i);
            String attName = "(";
            if (temp.isNumeric()) {
                attName += "numeric";
            } else if (temp.isNominal()) {
                attName += "nominal";
            } else if (temp.isRelationValued()) {
                attName += "relational";
            } else if (temp.isString()) {
                attName += "string";
            }
            attName += ") " + temp.name();
            attName = getFixedLengthString(attName, ' ', maxLength);
            attName += "\t--> ";
            result.append(attName);
            String inAttNum = "";
            if (m_attributeStatus[i] == NO_MATCH) {
                inAttNum += "- ";
                result.append(inAttNum + "missing (no match)\n");
            } else if (m_attributeStatus[i] == TYPE_MISMATCH) {
                inAttNum += (m_attributeMap[i] + 1) + " ";
                result.append(inAttNum + "missing (type mis-match)\n");
            } else {
                Attribute inAtt = m_inputHeader.attribute(m_attributeMap[i]);
                String inName = "" + (m_attributeMap[i] + 1) + " (";
                if (inAtt.isNumeric()) {
                    inName += "numeric";
                } else if (inAtt.isNominal()) {
                    inName += "nominal";
                } else if (inAtt.isRelationValued()) {
                    inName += "relational";
                } else if (inAtt.isString()) {
                    inName += "string";
                }
                inName += ") " + inAtt.name();
                result.append(inName + "\n");
            }
        }

        return result;
    }

    protected static final int NO_MATCH = -1;
    protected static final int TYPE_MISMATCH = -2;
    protected static final int OK = -3;

    private boolean regenerateMapping() throws Exception {
        loadModel(m_modelPath); // load a model (if specified)

        if (m_modelHeader == null) {
            return false;
        }

        m_attributeMap = new int[m_modelHeader.numAttributes()];
        m_attributeStatus = new int[m_modelHeader.numAttributes()];
        m_nominalValueMap = new int[m_modelHeader.numAttributes()][];

        for (int i = 0; i < m_modelHeader.numAttributes(); i++) {
            String modelAttName = m_modelHeader.attribute(i).name();
            m_attributeStatus[i] = NO_MATCH;

            for (int j = 0; j < m_inputHeader.numAttributes(); j++) {
                String incomingAttName = m_inputHeader.attribute(j).name();
                if (stringMatch(modelAttName, incomingAttName)) {
                    m_attributeMap[i] = j;
                    m_attributeStatus[i] = OK;

                    Attribute modelAtt = m_modelHeader.attribute(i);
                    Attribute incomingAtt = m_inputHeader.attribute(j);

                    // check types
                    if (modelAtt.type() != incomingAtt.type()) {
                        m_attributeStatus[i] = TYPE_MISMATCH;
                        break;
                    }

                    // now check nominal values (number, names...)
                    if (modelAtt.numValues() != incomingAtt.numValues()) {
                        System.out.println("[InputMappedClassifier] Warning: incoming nominal " + "attribute "
                                + incomingAttName + " does not have the same "
                                + "number of values as model attribute " + modelAttName);

                    }

                    if (modelAtt.isNominal() && incomingAtt.isNominal()) {
                        int[] valuesMap = new int[incomingAtt.numValues()];
                        for (int k = 0; k < incomingAtt.numValues(); k++) {
                            String incomingNomValue = incomingAtt.value(k);
                            int indexInModel = modelAtt.indexOfValue(incomingNomValue);
                            if (indexInModel < 0) {
                                valuesMap[k] = NO_MATCH;
                            } else {
                                valuesMap[k] = indexInModel;
                            }
                        }
                        m_nominalValueMap[i] = valuesMap;
                    }
                }
            }
        }

        return true;
    }

    /**
     * Return the instance structure that the encapsulated model was built with.
     * If the classifier will be built from scratch by InputMappedClassifier then
     * this method just returns the default structure that is passed in as
     * argument.
     * 
     * @param defaultH the default instances structure
     * @return the instances structure used to create the encapsulated model
     * @throws Exception if a problem occurs
     */
    public Instances getModelHeader(Instances defaultH) throws Exception {
        loadModel(m_modelPath);

        // If the model header is null, then we must be going to build from
        // scratch in buildClassifier. Therefore, just return the supplied default,
        // since this has to match what we will build with
        Instances toReturn = (m_modelHeader == null) ? defaultH : m_modelHeader;

        return toReturn.stringFreeStructure();
    }

    // get the mapped class index (i.e. the index in the incoming data of
    // the attribute that the model uses as the class
    public int getMappedClassIndex() throws Exception {
        if (m_modelHeader == null) {
            throw new Exception("[InputMappedClassifier] No model available!");
        }

        if (m_attributeMap[m_modelHeader.classIndex()] == NO_MATCH) {
            return -1;
        }

        return m_attributeMap[m_modelHeader.classIndex()];
    }

    public synchronized Instance constructMappedInstance(Instance incoming) throws Exception {

        boolean regenerateMapping = false;

        if (m_inputHeader == null) {
            m_inputHeader = incoming.dataset().stringFreeStructure();
            regenerateMapping = true;
            m_initialTestStructureKnown = false;
        } else if (!m_inputHeader.equalHeaders(incoming.dataset())) {
            /*
             * System.out.println("[InputMappedClassifier] incoming data does not match "
             * + "last known input format - regenerating mapping...");
             * System.out.println("Incoming\n" + new Instances(incoming.dataset(),
             * 0)); System.out.println("Stored input header\n" + new
             * Instances(m_inputHeader, 0)); System.out.println("Model header\n" + new
             * Instances(m_modelHeader, 0));
             */
            m_inputHeader = incoming.dataset().stringFreeStructure();

            regenerateMapping = true;
            m_initialTestStructureKnown = false;
        } else if (m_attributeMap == null) {
            regenerateMapping = true;
            m_initialTestStructureKnown = false;
        }

        if (regenerateMapping) {
            regenerateMapping();
            m_vals = null;

            if (!m_suppressMappingReport) {
                StringBuffer result = createMappingReport();
                System.out.println(result.toString());
            }
        }

        m_vals = new double[m_modelHeader.numAttributes()];

        // Create a fresh dataset object in case we have string or relational attributes
        Instances freshData = m_modelHeader.stringFreeStructure();

        for (int i = 0; i < m_modelHeader.numAttributes(); i++) {
            if (m_attributeStatus[i] == OK) {
                Attribute modelAtt = m_modelHeader.attribute(i);

                if (Utils.isMissingValue(incoming.value(m_attributeMap[i]))) {
                    m_vals[i] = Utils.missingValue();
                    continue;
                }

                if (modelAtt.isNumeric()) {
                    m_vals[i] = incoming.value(m_attributeMap[i]);
                } else if (modelAtt.isNominal()) {
                    int mapVal = m_nominalValueMap[i][(int) incoming.value(m_attributeMap[i])];

                    if (mapVal == NO_MATCH) {
                        m_vals[i] = Utils.missingValue();
                    } else {
                        m_vals[i] = mapVal;
                    }
                } else if (modelAtt.isString()) {
                    m_vals[i] = freshData.attribute(i).addStringValue(incoming.attribute(m_attributeMap[i]),
                            (int) incoming.value(m_attributeMap[i]));
                } else if (modelAtt.isRelationValued()) {
                    m_vals[i] = freshData.attribute(i).addRelation(incoming.relationalValue(m_attributeMap[i]));
                }
            } else {
                m_vals[i] = Utils.missingValue();
            }
        }

        Instance newInst = new DenseInstance(incoming.weight(), m_vals);
        newInst.setDataset(freshData);

        return newInst;
    }

    @Override
    public double classifyInstance(Instance inst) throws Exception {
        Instance converted = constructMappedInstance(inst);
        return m_Classifier.classifyInstance(converted);
    }

    @Override
    public double[] distributionForInstance(Instance inst) throws Exception {

        Instance converted = constructMappedInstance(inst);
        return m_Classifier.distributionForInstance(converted);
    }

    @Override
    public String toString() {
        StringBuffer buff = new StringBuffer();

        buff.append("InputMappedClassifier:\n\n");

        try {
            loadModel(m_modelPath);
        } catch (Exception ex) {
            return "[InputMappedClassifier] Problem loading model.";
        }

        if (m_modelPath != null && m_modelPath.length() > 0) {
            buff.append("Model sourced from: " + m_modelPath + "\n\n");
        }

        /*
         * if (m_loadedClassifier != null) { buff.append(m_loadedClassifier); } else
         * {
         */
        buff.append(m_Classifier);
        // }

        if (!m_suppressMappingReport && m_inputHeader != null) {
            try {
                regenerateMapping();
            } catch (Exception ex) {
                ex.printStackTrace();
                return "[InputMappedClassifier] Problem loading model.";
            }
            if (m_attributeMap != null) {
                buff.append("\n" + createMappingReport().toString());
            }
        }

        return buff.toString();
    }

    /**
     * Returns the type of graph this classifier represents.
     * 
     * @return the type of graph
     */
    @Override
    public int graphType() {

        if (m_Classifier instanceof Drawable) {
            return ((Drawable) m_Classifier).graphType();
        } else {
            return Drawable.NOT_DRAWABLE;
        }
    }

    /**
     * Returns an enumeration of the additional measure names
     * 
     * @return an enumeration of the measure names
     */
    @Override
    public Enumeration<String> enumerateMeasures() {
        Vector<String> newVector = new Vector<String>();

        if (m_Classifier instanceof AdditionalMeasureProducer) {
            Enumeration<String> en = ((AdditionalMeasureProducer) m_Classifier).enumerateMeasures();
            while (en.hasMoreElements()) {
                String mname = en.nextElement();
                newVector.addElement(mname);
            }
        }
        return newVector.elements();
    }

    /**
     * Returns the value of the named measure
     * 
     * @param additionalMeasureName the name of the measure to query for its value
     * @return the value of the named measure
     * @throws IllegalArgumentException if the named measure is not supported
     */
    @Override
    public double getMeasure(String additionalMeasureName) {
        if (m_Classifier instanceof AdditionalMeasureProducer) {
            return ((AdditionalMeasureProducer) m_Classifier).getMeasure(additionalMeasureName);
        } else {
            throw new IllegalArgumentException(additionalMeasureName + " not supported (InputMappedClassifier)");
        }
    }

    /**
     * Returns graph describing the classifier (if possible).
     * 
     * @return the graph of the classifier in dotty format
     * @throws Exception if the classifier cannot be graphed
     */
    @Override
    public String graph() throws Exception {

        if (m_Classifier != null && m_Classifier instanceof Drawable) {
            return ((Drawable) m_Classifier).graph();
        } else {
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot be graphed");
        }
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv should contain the following arguments: -t training file [-T
     *          test file] [-c class index]
     */
    public static void main(String[] argv) {
        runClassifier(new InputMappedClassifier(), argv);
    }

}