weka.classifiers.meta.Vote.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.meta.Vote.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    Vote.java
 *    Copyright (C) 2000-2012 University of Waikato
 *
 */

package weka.classifiers.meta;

import weka.classifiers.Classifier;
import weka.classifiers.RandomizableMultipleClassifiersCombiner;
import weka.classifiers.misc.InputMappedClassifier;
import weka.core.Aggregateable;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Environment;
import weka.core.EnvironmentHandler;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.RevisionUtils;
import weka.core.SelectedTag;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;

import java.io.BufferedInputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Enumeration;
import java.util.List;
import java.util.Vector;

/**
 * <!-- globalinfo-start --> Class for combining classifiers. Different
 * combinations of probability estimates for classification are available.<br/>
 * <br/>
 * For more information see:<br/>
 * <br/>
 * Ludmila I. Kuncheva (2004). Combining Pattern Classifiers: Methods and
 * Algorithms. John Wiley and Sons, Inc..<br/>
 * <br/>
 * J. Kittler, M. Hatef, Robert P.W. Duin, J. Matas (1998). On combining
 * classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence.
 * 20(3):226-239.
 * <p/>
 * <!-- globalinfo-end -->
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -P &lt;path to serialized classifier&gt;
 *  Full path to serialized classifier to include.
 *  May be specified multiple times to include
 *  multiple serialized classifiers. Note: it does
 *  not make sense to use pre-built classifiers in
 *  a cross-validation.
 * </pre>
 * 
 * <pre>
 * -R &lt;AVG|PROD|MAJ|MIN|MAX|MED&gt;
 *  The combination rule to use
 *  (default: AVG)
 * </pre>
 * 
 * <pre>
 * -print
 *  Print the individual models in the output
 * </pre>
 * 
 * <pre>
 * -S &lt;num&gt;
 *  Random number seed.
 *  (default 1)
 * </pre>
 * 
 * <pre>
 * -B &lt;classifier specification&gt;
 *  Full class name of classifier to include, followed
 *  by scheme options. May be specified multiple times.
 *  (default: "weka.classifiers.rules.ZeroR")
 * </pre>
 * 
 * <pre>
 * -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * </pre>
 * 
 * <pre>
 * -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
 * </pre>
 * 
 * <pre>
 * Options specific to classifier weka.classifiers.rules.ZeroR:
 * </pre>
 * 
 * <pre>
 * -output-debug-info
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console
 * </pre>
 * 
 * <pre>
 * -do-not-check-capabilities
 *  If set, classifier capabilities are not checked before classifier is built
 *  (use with caution).
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * <!-- technical-bibtex-start --> BibTeX:
 * 
 * <pre>
 * &#64;book{Kuncheva2004,
 *    author = {Ludmila I. Kuncheva},
 *    publisher = {John Wiley and Sons, Inc.},
 *    title = {Combining Pattern Classifiers: Methods and Algorithms},
 *    year = {2004}
 * }
 * 
 * &#64;article{Kittler1998,
 *    author = {J. Kittler and M. Hatef and Robert P.W. Duin and J. Matas},
 *    journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
 *    number = {3},
 *    pages = {226-239},
 *    title = {On combining classifiers},
 *    volume = {20},
 *    year = {1998}
 * }
 * </pre>
 * <p/>
 * <!-- technical-bibtex-end -->
 * 
 * @author Alexander K. Seewald (alex@seewald.at)
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @author Roberto Perdisci (roberto.perdisci@gmail.com)
 * @version $Revision$
 */
public class Vote extends RandomizableMultipleClassifiersCombiner
        implements TechnicalInformationHandler, EnvironmentHandler, Aggregateable<Classifier> {

    /** for serialization */
    static final long serialVersionUID = -637891196294399624L;

    /** combination rule: Average of Probabilities */
    public static final int AVERAGE_RULE = 1;
    /** combination rule: Product of Probabilities (only nominal classes) */
    public static final int PRODUCT_RULE = 2;
    /** combination rule: Majority Voting (only nominal classes) */
    public static final int MAJORITY_VOTING_RULE = 3;
    /** combination rule: Minimum Probability */
    public static final int MIN_RULE = 4;
    /** combination rule: Maximum Probability */
    public static final int MAX_RULE = 5;
    /** combination rule: Median Probability (only numeric class) */
    public static final int MEDIAN_RULE = 6;
    /** combination rules */
    public static final Tag[] TAGS_RULES = { new Tag(AVERAGE_RULE, "AVG", "Average of Probabilities"),
            new Tag(PRODUCT_RULE, "PROD", "Product of Probabilities"),
            new Tag(MAJORITY_VOTING_RULE, "MAJ", "Majority Voting"),
            new Tag(MIN_RULE, "MIN", "Minimum Probability"), new Tag(MAX_RULE, "MAX", "Maximum Probability"),
            new Tag(MEDIAN_RULE, "MED", "Median") };

    /** Combination Rule variable */
    protected int m_CombinationRule = AVERAGE_RULE;

    /** List of file paths to serialized models to load */
    protected List<String> m_classifiersToLoad = new ArrayList<String>();

    /** List of de-serialized pre-built classifiers to include in the ensemble */
    protected List<Classifier> m_preBuiltClassifiers = new ArrayList<Classifier>();

    /** Environment variables */
    protected transient Environment m_env = Environment.getSystemWide();

    /** Structure of the training data */
    protected Instances m_structure;

    /** Print the individual models in the output */
    protected boolean m_dontPrintModels;

    /**
     * Returns a string describing classifier
     * 
     * @return a description suitable for displaying in the explorer/experimenter
     *         gui
     */
    public String globalInfo() {
        return "Class for combining classifiers. Different combinations of "
                + "probability estimates for classification are available.\n\n" + "For more information see:\n\n"
                + getTechnicalInformation().toString();
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        Vector<Option> result = new Vector<Option>();

        result.addElement(new Option(
                "\tFull path to serialized classifier to include.\n"
                        + "\tMay be specified multiple times to include\n"
                        + "\tmultiple serialized classifiers. Note: it does\n"
                        + "\tnot make sense to use pre-built classifiers in\n" + "\ta cross-validation.",
                "P", 1, "-P <path to serialized " + "classifier>"));

        result.addElement(new Option("\tThe combination rule to use\n" + "\t(default: AVG)", "R", 1,
                "-R " + Tag.toOptionList(TAGS_RULES)));

        result.addElement(new Option("\tSuppress the printing of the individual models in the output",
                "do-not-print", 0, "-do-not-print"));

        result.addAll(Collections.list(super.listOptions()));

        return result.elements();
    }

    /**
     * Gets the current settings of Vote.
     * 
     * @return an array of strings suitable for passing to setOptions()
     */
    @Override
    public String[] getOptions() {
        int i;
        Vector<String> result = new Vector<String>();
        String[] options;

        options = super.getOptions();
        for (i = 0; i < options.length; i++) {
            result.add(options[i]);
        }

        result.add("-R");
        result.add("" + getCombinationRule());

        for (i = 0; i < m_classifiersToLoad.size(); i++) {
            result.add("-P");
            result.add(m_classifiersToLoad.get(i));
        }

        if (m_dontPrintModels) {
            result.add("-do-not-print");
        }

        return result.toArray(new String[result.size()]);
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start --> Valid options are:
     * <p/>
     * 
     * <pre>
     * -P &lt;path to serialized classifier&gt;
     *  Full path to serialized classifier to include.
     *  May be specified multiple times to include
     *  multiple serialized classifiers. Note: it does
     *  not make sense to use pre-built classifiers in
     *  a cross-validation.
     * </pre>
     * 
     * <pre>
     * -R &lt;AVG|PROD|MAJ|MIN|MAX|MED&gt;
     *  The combination rule to use
     *  (default: AVG)
     * </pre>
     * 
     * <pre>
     * -print
     *  Print the individual models in the output
     * </pre>
     * 
     * <pre>
     * -S &lt;num&gt;
     *  Random number seed.
     *  (default 1)
     * </pre>
     * 
     * <pre>
     * -B &lt;classifier specification&gt;
     *  Full class name of classifier to include, followed
     *  by scheme options. May be specified multiple times.
     *  (default: "weka.classifiers.rules.ZeroR")
     * </pre>
     * 
     * <pre>
     * -output-debug-info
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <pre>
     * -do-not-check-capabilities
     *  If set, classifier capabilities are not checked before classifier is built
     *  (use with caution).
     * </pre>
     * 
     * <pre>
     * Options specific to classifier weka.classifiers.rules.ZeroR:
     * </pre>
     * 
     * <pre>
     * -output-debug-info
     *  If set, classifier is run in debug mode and
     *  may output additional info to the console
     * </pre>
     * 
     * <pre>
     * -do-not-check-capabilities
     *  If set, classifier capabilities are not checked before classifier is built
     *  (use with caution).
     * </pre>
     * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        String tmpStr;

        tmpStr = Utils.getOption('R', options);
        if (tmpStr.length() != 0) {
            setCombinationRule(new SelectedTag(tmpStr, TAGS_RULES));
        } else {
            setCombinationRule(new SelectedTag(AVERAGE_RULE, TAGS_RULES));
        }

        m_classifiersToLoad.clear();
        while (true) {
            String loadString = Utils.getOption('P', options);
            if (loadString.length() == 0) {
                break;
            }

            m_classifiersToLoad.add(loadString);
        }

        setDoNotPrintModels(Utils.getFlag("do-not-print", options));

        super.setOptions(options);
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;
        TechnicalInformation additional;

        result = new TechnicalInformation(Type.BOOK);
        result.setValue(Field.AUTHOR, "Ludmila I. Kuncheva");
        result.setValue(Field.TITLE, "Combining Pattern Classifiers: Methods and Algorithms");
        result.setValue(Field.YEAR, "2004");
        result.setValue(Field.PUBLISHER, "John Wiley and Sons, Inc.");

        additional = result.add(Type.ARTICLE);
        additional.setValue(Field.AUTHOR, "J. Kittler and M. Hatef and Robert P.W. Duin and J. Matas");
        additional.setValue(Field.YEAR, "1998");
        additional.setValue(Field.TITLE, "On combining classifiers");
        additional.setValue(Field.JOURNAL, "IEEE Transactions on Pattern Analysis and Machine Intelligence");
        additional.setValue(Field.VOLUME, "20");
        additional.setValue(Field.NUMBER, "3");
        additional.setValue(Field.PAGES, "226-239");

        return result;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = super.getCapabilities();

        if (m_preBuiltClassifiers.size() == 0 && m_classifiersToLoad.size() > 0) {
            try {
                loadClassifiers(null);
            } catch (Exception e) {
                e.printStackTrace();
            }
        }

        if (m_preBuiltClassifiers.size() > 0) {
            if (m_Classifiers.length == 0) {
                result = (Capabilities) m_preBuiltClassifiers.get(0).getCapabilities().clone();
            }
            for (int i = 1; i < m_preBuiltClassifiers.size(); i++) {
                result.and(m_preBuiltClassifiers.get(i).getCapabilities());
            }

            for (Capability cap : Capability.values()) {
                result.enableDependency(cap);
            }
        }

        // class
        if ((m_CombinationRule == PRODUCT_RULE) || (m_CombinationRule == MAJORITY_VOTING_RULE)) {
            result.disableAllClasses();
            result.disableAllClassDependencies();
            result.enable(Capability.NOMINAL_CLASS);
            result.enableDependency(Capability.NOMINAL_CLASS);
        } else if (m_CombinationRule == MEDIAN_RULE) {
            result.disableAllClasses();
            result.disableAllClassDependencies();
            result.enable(Capability.NUMERIC_CLASS);
            result.enableDependency(Capability.NUMERIC_CLASS);
        }

        return result;
    }

    /**
     * Buildclassifier selects a classifier from the set of classifiers by
     * minimising error on the training data.
     * 
     * @param data the training data to be used for generating the boosted
     *          classifier.
     * @throws Exception if the classifier could not be built successfully
     */
    @Override
    public void buildClassifier(Instances data) throws Exception {

        // remove instances with missing class
        Instances newData = new Instances(data);
        newData.deleteWithMissingClass();
        m_structure = new Instances(newData, 0);

        if (m_classifiersToLoad.size() > 0) {
            m_preBuiltClassifiers.clear();
            loadClassifiers(data);

            if (m_Classifiers.length == 1 && m_Classifiers[0] instanceof weka.classifiers.rules.ZeroR) {
                // remove the single ZeroR
                m_Classifiers = new Classifier[0];
            }
        }

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        for (int i = 0; i < m_Classifiers.length; i++) {
            getClassifier(i).buildClassifier(newData);
        }
    }

    /**
     * Load serialized models to include in the ensemble
     * 
     * @param data training instances (used in a header compatibility check with
     *          each of the loaded models)
     * 
     * @throws Exception if there is a problem de-serializing a model
     */
    private void loadClassifiers(Instances data) throws Exception {
        for (String path : m_classifiersToLoad) {
            if (Environment.containsEnvVariables(path)) {
                try {
                    path = m_env.substitute(path);
                } catch (Exception ex) {
                }
            }

            File toLoad = new File(path);
            if (!toLoad.isFile()) {
                throw new Exception("\"" + path + "\" does not seem to be a valid file!");
            }
            ObjectInputStream is = new ObjectInputStream(new BufferedInputStream(new FileInputStream(toLoad)));
            Object c = is.readObject();
            if (!(c instanceof Classifier)) {
                is.close();
                throw new Exception("\"" + path + "\" does not contain a classifier!");
            }
            Object header = null;
            header = is.readObject();
            if ((header instanceof Instances) && !(c instanceof InputMappedClassifier)) {
                if (data != null && !data.equalHeaders((Instances) header)) {
                    is.close();
                    throw new Exception("\"" + path + "\" was trained with data that is "
                            + "of a differnet structure than the incoming training data");
                }
            }
            if (header == null) {
                System.out.println("[Vote] warning: no header instances for \"" + path + "\"");
            }
            is.close();
            addPreBuiltClassifier((Classifier) c);
        }
    }

    /**
     * Add a prebuilt classifier to the list for use in the ensemble
     * 
     * @param c a prebuilt Classifier to add.
     */
    public void addPreBuiltClassifier(Classifier c) {
        m_preBuiltClassifiers.add(c);
    }

    /**
     * Remove a prebuilt classifier from the list to use in the ensemble
     * 
     * @param c the classifier to remove
     */
    public void removePreBuiltClassifier(Classifier c) {
        m_preBuiltClassifiers.remove(c);
    }

    /**
     * Classifies the given test instance.
     * 
     * @param instance the instance to be classified
     * @return the predicted most likely class for the instance or
     *         Utils.missingValue() if no prediction is made
     * @throws Exception if an error occurred during the prediction
     */
    @Override
    public double classifyInstance(Instance instance) throws Exception {
        double result;
        double[] dist;
        int index;

        switch (m_CombinationRule) {
        case AVERAGE_RULE:
        case PRODUCT_RULE:
        case MAJORITY_VOTING_RULE:
        case MIN_RULE:
        case MAX_RULE:
            dist = distributionForInstance(instance);
            if (instance.classAttribute().isNominal()) {
                index = Utils.maxIndex(dist);
                if (dist[index] == 0) {
                    result = Utils.missingValue();
                } else {
                    result = index;
                }
            } else if (instance.classAttribute().isNumeric()) {
                result = dist[0];
            } else {
                result = Utils.missingValue();
            }
            break;
        case MEDIAN_RULE:
            result = classifyInstanceMedian(instance);
            break;
        default:
            throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!");
        }

        return result;
    }

    /**
     * Classifies the given test instance, returning the median from all
     * classifiers. Can assume that class is numeric.
     * 
     * @param instance the instance to be classified
     * @return the predicted most likely class for the instance or
     *         Utils.missingValue() if no prediction is made
     * @throws Exception if an error occurred during the prediction
     */
    protected double classifyInstanceMedian(Instance instance) throws Exception {
        double[] results = new double[m_Classifiers.length + m_preBuiltClassifiers.size()];

        int numResults = 0;
        for (Classifier m_Classifier : m_Classifiers) {
            double pred = m_Classifier.classifyInstance(instance);
            if (!Utils.isMissingValue(pred)) {
                results[numResults++] = pred;
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            double pred = m_preBuiltClassifiers.get(i).classifyInstance(instance);
            if (!Utils.isMissingValue(pred)) {
                results[numResults++] = pred;
            }
        }

        if (numResults == 0) {
            return Utils.missingValue();
        } else if (numResults == 1) {
            return results[0];
        } else {
            double[] actualResults = new double[numResults];
            System.arraycopy(results, 0, actualResults, 0, numResults);
            return Utils.kthSmallestValue(actualResults, actualResults.length / 2);
        }
    }

    /**
     * Classifies a given instance using the selected combination rule.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    @Override
    public double[] distributionForInstance(Instance instance) throws Exception {
        double[] result = new double[instance.numClasses()];

        switch (m_CombinationRule) {
        case AVERAGE_RULE:
            result = distributionForInstanceAverage(instance);
            break;
        case PRODUCT_RULE:
            result = distributionForInstanceProduct(instance);
            break;
        case MAJORITY_VOTING_RULE:
            result = distributionForInstanceMajorityVoting(instance);
            break;
        case MIN_RULE:
            result = distributionForInstanceMin(instance);
            break;
        case MAX_RULE:
            result = distributionForInstanceMax(instance);
            break;
        case MEDIAN_RULE:
            result[0] = classifyInstance(instance);
            break;
        default:
            throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!");
        }

        if (!instance.classAttribute().isNumeric() && (Utils.sum(result) > 0)) {
            Utils.normalize(result);
        }

        return result;
    }

    /**
     * Classifies a given instance using the Average of Probabilities combination
     * rule.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    protected double[] distributionForInstanceAverage(Instance instance) throws Exception {

        double[] probs = new double[instance.numClasses()];

        double numPredictions = 0;
        for (int i = 0; i < m_Classifiers.length; i++) {
            double[] dist = getClassifier(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    probs[j] += dist[j];
                }
                numPredictions++;
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            double[] dist = m_preBuiltClassifiers.get(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    probs[j] += dist[j];
                }
                numPredictions++;
            }
        }

        if (instance.classAttribute().isNumeric()) {
            if (numPredictions == 0) {
                probs[0] = Utils.missingValue();
            } else {
                for (int j = 0; j < probs.length; j++) {
                    probs[j] /= numPredictions;
                }
            }
        } else {

            // Should normalize "probability" distribution
            if (Utils.sum(probs) > 0) {
                Utils.normalize(probs);
            }
        }

        return probs;
    }

    /**
     * Classifies a given instance using the Product of Probabilities combination
     * rule. Can assume that class is nominal.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    protected double[] distributionForInstanceProduct(Instance instance) throws Exception {

        double[] probs = new double[instance.numClasses()];
        for (int i = 0; i < probs.length; i++) {
            probs[i] = 1.0;
        }

        int numPredictions = 0;
        for (int i = 0; i < m_Classifiers.length; i++) {
            double[] dist = getClassifier(i).distributionForInstance(instance);
            if (Utils.sum(dist) > 0) {
                for (int j = 0; j < dist.length; j++) {
                    probs[j] *= dist[j];
                }
                numPredictions++;
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            double[] dist = m_preBuiltClassifiers.get(i).distributionForInstance(instance);
            if (Utils.sum(dist) > 0) {
                for (int j = 0; j < dist.length; j++) {
                    probs[j] *= dist[j];
                }
                numPredictions++;
            }
        }

        // No predictions?
        if (numPredictions == 0) {
            return new double[instance.numClasses()];
        }

        // Should normalize to get "probabilities"
        if (Utils.sum(probs) > 0) {
            Utils.normalize(probs);
        }

        return probs;
    }

    /**
     * Classifies a given instance using the Majority Voting combination rule. Can
     * assume that class is nominal.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    protected double[] distributionForInstanceMajorityVoting(Instance instance) throws Exception {

        double[] probs = new double[instance.classAttribute().numValues()];
        double[] votes = new double[probs.length];

        for (int i = 0; i < m_Classifiers.length; i++) {
            probs = getClassifier(i).distributionForInstance(instance);
            int maxIndex = 0;
            for (int j = 0; j < probs.length; j++) {
                if (probs[j] > probs[maxIndex]) {
                    maxIndex = j;
                }
            }

            // Consider the cases when multiple classes happen to have the same
            // probability
            if (probs[maxIndex] > 0) {
                for (int j = 0; j < probs.length; j++) {
                    if (probs[j] == probs[maxIndex]) {
                        votes[j]++;
                    }
                }
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            probs = m_preBuiltClassifiers.get(i).distributionForInstance(instance);
            int maxIndex = 0;

            for (int j = 0; j < probs.length; j++) {
                if (probs[j] > probs[maxIndex]) {
                    maxIndex = j;
                }
            }

            // Consider the cases when multiple classes happen to have the same
            // probability
            if (probs[maxIndex] > 0) {
                for (int j = 0; j < probs.length; j++) {
                    if (probs[j] == probs[maxIndex]) {
                        votes[j]++;
                    }
                }
            }
        }

        int tmpMajorityIndex = 0;
        for (int k = 1; k < votes.length; k++) {
            if (votes[k] > votes[tmpMajorityIndex]) {
                tmpMajorityIndex = k;
            }
        }

        // No votes received
        if (votes[tmpMajorityIndex] == 0) {
            return new double[instance.numClasses()];
        }

        // Consider the cases when multiple classes receive the same amount of votes
        Vector<Integer> majorityIndexes = new Vector<Integer>();
        for (int k = 0; k < votes.length; k++) {
            if (votes[k] == votes[tmpMajorityIndex]) {
                majorityIndexes.add(k);
            }
        }
        int majorityIndex = tmpMajorityIndex;
        if (majorityIndexes.size() > 1) {
            // resolve ties by looking at the predicted distribution
            double[] distPreds = distributionForInstanceAverage(instance);
            majorityIndex = Utils.maxIndex(distPreds);
            // Resolve the ties according to a uniform random distribution
            // majorityIndex = majorityIndexes.get(m_Random.nextInt(majorityIndexes.size()));
        }

        // set probs to 0
        probs = new double[probs.length];

        probs[majorityIndex] = 1; // the class that have been voted the most
                                  // receives 1

        return probs;
    }

    /**
     * Classifies a given instance using the Maximum Probability combination rule.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    protected double[] distributionForInstanceMax(Instance instance) throws Exception {

        double[] probs = new double[instance.numClasses()];

        double numPredictions = 0;
        for (int i = 0; i < m_Classifiers.length; i++) {
            double[] dist = getClassifier(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    if ((probs[j] < dist[j]) || (numPredictions == 0)) {
                        probs[j] = dist[j];
                    }
                }
                numPredictions++;
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            double[] dist = m_preBuiltClassifiers.get(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    if ((probs[j] < dist[j]) || (numPredictions == 0)) {
                        probs[j] = dist[j];
                    }
                }
                numPredictions++;
            }
        }

        if (instance.classAttribute().isNumeric()) {
            if (numPredictions == 0) {
                probs[0] = Utils.missingValue();
            }
        } else {

            // Should normalize "probability" distribution
            if (Utils.sum(probs) > 0) {
                Utils.normalize(probs);
            }
        }

        return probs;
    }

    /**
     * Classifies a given instance using the Minimum Probability combination rule.
     * 
     * @param instance the instance to be classified
     * @return the distribution
     * @throws Exception if instance could not be classified successfully
     */
    protected double[] distributionForInstanceMin(Instance instance) throws Exception {

        double[] probs = new double[instance.numClasses()];

        double numPredictions = 0;
        for (int i = 0; i < m_Classifiers.length; i++) {
            double[] dist = getClassifier(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    if ((probs[j] > dist[j]) || (numPredictions == 0)) {
                        probs[j] = dist[j];
                    }
                }
                numPredictions++;
            }
        }

        for (int i = 0; i < m_preBuiltClassifiers.size(); i++) {
            double[] dist = m_preBuiltClassifiers.get(i).distributionForInstance(instance);
            if (!instance.classAttribute().isNumeric() || !Utils.isMissingValue(dist[0])) {
                for (int j = 0; j < dist.length; j++) {
                    if ((probs[j] > dist[j]) || (numPredictions == 0)) {
                        probs[j] = dist[j];
                    }
                }
                numPredictions++;
            }
        }

        if (instance.classAttribute().isNumeric()) {
            if (numPredictions == 0) {
                probs[0] = Utils.missingValue();
            }
        } else {

            // Should normalize "probability" distribution
            if (Utils.sum(probs) > 0) {
                Utils.normalize(probs);
            }
        }

        return probs;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String combinationRuleTipText() {
        return "The combination rule used.";
    }

    /**
     * Gets the combination rule used
     * 
     * @return the combination rule used
     */
    public SelectedTag getCombinationRule() {
        return new SelectedTag(m_CombinationRule, TAGS_RULES);
    }

    /**
     * Sets the combination rule to use. Values other than
     * 
     * @param newRule the combination rule method to use
     */
    public void setCombinationRule(SelectedTag newRule) {
        if (newRule.getTags() == TAGS_RULES) {
            m_CombinationRule = newRule.getSelectedTag().getID();
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String preBuiltClassifiersTipText() {
        return "The pre-built serialized classifiers to include. Multiple "
                + "serialized classifiers can be included alongside those "
                + "that are built from scratch when this classifier runs. "
                + "Note that it does not make sense to include pre-built "
                + "classifiers in a cross-validation since they are static "
                + "and their models do not change from fold to fold.";
    }

    /**
     * Set the paths to pre-built serialized classifiers to load and include in
     * the ensemble
     * 
     * @param preBuilt an array of File paths to serialized models
     */
    public void setPreBuiltClassifiers(File[] preBuilt) {
        m_classifiersToLoad.clear();
        if (preBuilt != null && preBuilt.length > 0) {
            for (File element : preBuilt) {
                String path = element.toString();
                m_classifiersToLoad.add(path);
            }
        }
    }

    /**
     * Get the paths to pre-built serialized classifiers to load and include in
     * the ensemble
     * 
     * @return an array of File paths to serialized models
     */
    public File[] getPreBuiltClassifiers() {
        File[] result = new File[m_classifiersToLoad.size()];

        for (int i = 0; i < m_classifiersToLoad.size(); i++) {
            result[i] = new File(m_classifiersToLoad.get(i));
        }

        return result;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String doNotPrintModelsTipText() {
        return "Do not print the individual trees in the output";
    }

    /**
     * Set whether to print the individual ensemble models in the output
     * 
     * @param print true if the individual models are to be printed
     */
    public void setDoNotPrintModels(boolean print) {
        m_dontPrintModels = print;
    }

    /**
     * Get whether to print the individual ensemble models in the output
     * 
     * @return true if the individual models are to be printed
     */
    public boolean getDoNotPrintModels() {
        return m_dontPrintModels;
    }

    /**
     * Output a representation of this classifier
     * 
     * @return a string representation of the classifier
     */
    @Override
    public String toString() {

        if (m_Classifiers == null) {
            return "Vote: No model built yet.";
        }

        String result = "Vote combines";
        result += " the probability distributions of these base learners:\n";
        for (int i = 0; i < m_Classifiers.length; i++) {
            result += '\t' + getClassifierSpec(i) + '\n';
        }

        for (Classifier c : m_preBuiltClassifiers) {
            result += "\t" + c.getClass().getName() + Utils.joinOptions(((OptionHandler) c).getOptions()) + "\n";
        }

        result += "using the '";

        switch (m_CombinationRule) {
        case AVERAGE_RULE:
            result += "Average";
            break;

        case PRODUCT_RULE:
            result += "Product";
            break;

        case MAJORITY_VOTING_RULE:
            result += "Majority Voting";
            break;

        case MIN_RULE:
            result += "Minimum";
            break;

        case MAX_RULE:
            result += "Maximum";
            break;

        case MEDIAN_RULE:
            result += "Median";
            break;

        default:
            throw new IllegalStateException("Unknown combination rule '" + m_CombinationRule + "'!");
        }

        result += "' combination rule \n";

        StringBuilder resultBuilder = null;
        if (!m_dontPrintModels) {
            resultBuilder = new StringBuilder();
            resultBuilder.append(result).append("\nAll the models:\n\n");
            for (Classifier c : m_Classifiers) {
                resultBuilder.append(c).append("\n");
            }

            for (Classifier c : m_preBuiltClassifiers) {
                resultBuilder.append(c).append("\n");
            }
        }

        return resultBuilder == null ? result : resultBuilder.toString();
    }

    /**
     * Returns the revision string.
     * 
     * @return the revision
     */
    @Override
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Set environment variable values to substitute in the paths of serialized
     * models to load
     * 
     * @param env the environment variables to use
     */
    @Override
    public void setEnvironment(Environment env) {
        m_env = env;
    }

    /**
     * Aggregate an object with this one
     * 
     * @param toAggregate the object to aggregate
     * @return the result of aggregation
     * @throws Exception if the supplied object can't be aggregated for some
     *           reason
     */
    @Override
    public Classifier aggregate(Classifier toAggregate) throws Exception {

        if (m_structure == null && m_Classifiers.length == 1
                && (m_Classifiers[0] instanceof weka.classifiers.rules.ZeroR)) {
            // remove the single untrained ZeroR
            setClassifiers(new Classifier[0]);
        }

        // Can't do any training data compatibility checks unfortunately
        addPreBuiltClassifier(toAggregate);

        return this;
    }

    /**
     * Call to complete the aggregation process. Allows implementers to do any
     * final processing based on how many objects were aggregated.
     * 
     * @throws Exception if the aggregation can't be finalized for some reason
     */
    @Override
    public void finalizeAggregation() throws Exception {
        // nothing to do
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv should contain the following arguments: -t training file [-T
     *          test file] [-c class index]
     */
    public static void main(String[] argv) {
        runClassifier(new Vote(), argv);
    }

}