weka.classifiers.meta.RandomCommittee.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.meta.RandomCommittee.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    RandomCommittee.java
 *    Copyright (C) 2003-2012 University of Waikato, Hamilton, New Zealand
 *
 */

package weka.classifiers.meta;

import java.util.Random;
import java.util.ArrayList;

import weka.classifiers.AbstractClassifier;
import weka.classifiers.RandomizableParallelIteratedSingleClassifierEnhancer;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Randomizable;
import weka.core.RevisionUtils;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.core.PartitionGenerator;

/**
 <!-- globalinfo-start -->
 * Class for building an ensemble of randomizable base classifiers. Each base classifiers is built using a different random number seed (but based one the same data). The final prediction is a straight average of the predictions generated by the individual base classifiers.
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -S &lt;num&gt;
 *  Random number seed.
 *  (default 1)</pre>
 * 
 * <pre> -I &lt;num&gt;
 *  Number of iterations.
 *  (default 10)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 * <pre> -W
 *  Full name of base classifier.
 *  (default: weka.classifiers.trees.RandomTree)</pre>
 * 
 * <pre> 
 * Options specific to classifier weka.classifiers.trees.RandomTree:
 * </pre>
 * 
 * <pre> -K &lt;number of attributes&gt;
 *  Number of attributes to randomly investigate
 *  (&lt;1 = int(log(#attributes)+1)).</pre>
 * 
 * <pre> -M &lt;minimum number of instances&gt;
 *  Set minimum number of instances per leaf.</pre>
 * 
 * <pre> -S &lt;num&gt;
 *  Seed for random number generator.
 *  (default 1)</pre>
 * 
 * <pre> -depth &lt;num&gt;
 *  The maximum depth of the tree, 0 for unlimited.
 *  (default 0)</pre>
 * 
 * <pre> -D
 *  If set, classifier is run in debug mode and
 *  may output additional info to the console</pre>
 * 
 <!-- options-end -->
 *
 * Options after -- are passed to the designated classifier.<p>
 *
 * @author Eibe Frank (eibe@cs.waikato.ac.nz)
 * @version $Revision$
 */
public class RandomCommittee extends RandomizableParallelIteratedSingleClassifierEnhancer
        implements WeightedInstancesHandler, PartitionGenerator {

    /** for serialization */
    static final long serialVersionUID = -9204394360557300093L;

    /** training data */
    protected Instances m_data;

    /**
     * Constructor.
     */
    public RandomCommittee() {

        m_Classifier = new weka.classifiers.trees.RandomTree();
    }

    /**
     * String describing default classifier.
     * 
     * @return the default classifier classname
     */
    protected String defaultClassifierString() {

        return "weka.classifiers.trees.RandomTree";
    }

    /**
     * Returns a string describing classifier
     * @return a description suitable for
     * displaying in the explorer/experimenter gui
     */
    public String globalInfo() {

        return "Class for building an ensemble of randomizable base classifiers. Each "
                + "base classifiers is built using a different random number seed (but based "
                + "one the same data). The final prediction is a straight average of the "
                + "predictions generated by the individual base classifiers.";
    }

    /**
     * Builds the committee of randomizable classifiers.
     *
     * @param data the training data to be used for generating the
     * bagged classifier.
     * @exception Exception if the classifier could not be built successfully
     */
    public void buildClassifier(Instances data) throws Exception {

        // can classifier handle the data?
        getCapabilities().testWithFail(data);

        // get fresh instances
        m_data = new Instances(data);
        super.buildClassifier(m_data);

        if (!(m_Classifier instanceof Randomizable)) {
            throw new IllegalArgumentException("Base learner must implement Randomizable!");
        }

        m_Classifiers = AbstractClassifier.makeCopies(m_Classifier, m_NumIterations);

        Random random = m_data.getRandomNumberGenerator(m_Seed);

        // Resample data based on weights if base learner can't handle weights
        if (!(m_Classifier instanceof WeightedInstancesHandler)) {
            m_data = m_data.resampleWithWeights(random);
        }

        for (int j = 0; j < m_Classifiers.length; j++) {

            // Set the random number seed for the current classifier.
            ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt());

            // Build the classifier.
            //      m_Classifiers[j].buildClassifier(m_data);
        }

        buildClassifiers();

        // save memory
        m_data = null;
    }

    /**
     * Returns a training set for a particular iteration.
     * 
     * @param iteration the number of the iteration for the requested training set.
     * @return the training set for the supplied iteration number
     * @throws Exception if something goes wrong when generating a training set.
     */
    protected synchronized Instances getTrainingSet(int iteration) throws Exception {

        // we don't manipulate the training data in any way.
        return m_data;
    }

    /**
     * Calculates the class membership probabilities for the given test
     * instance.
     *
     * @param instance the instance to be classified
     * @return preedicted class probability distribution
     * @exception Exception if distribution can't be computed successfully 
     */
    public double[] distributionForInstance(Instance instance) throws Exception {

        double[] sums = new double[instance.numClasses()], newProbs;

        double numPreds = 0;
        for (int i = 0; i < m_NumIterations; i++) {
            if (instance.classAttribute().isNumeric() == true) {
                double pred = m_Classifiers[i].classifyInstance(instance);
                if (!Utils.isMissingValue(pred)) {
                    sums[0] += pred;
                    numPreds++;
                }
            } else {
                newProbs = m_Classifiers[i].distributionForInstance(instance);
                for (int j = 0; j < newProbs.length; j++)
                    sums[j] += newProbs[j];
            }
        }
        if (instance.classAttribute().isNumeric() == true) {
            if (numPreds == 0) {
                sums[0] = Utils.missingValue();
            } else {
                sums[0] /= numPreds;
            }
            return sums;
        } else if (Utils.eq(Utils.sum(sums), 0)) {
            return sums;
        } else {
            Utils.normalize(sums);
            return sums;
        }
    }

    /**
     * Returns description of the committee.
     *
     * @return description of the committee as a string
     */
    public String toString() {

        if (m_Classifiers == null) {
            return "RandomCommittee: No model built yet.";
        }
        StringBuffer text = new StringBuffer();
        text.append("All the base classifiers: \n\n");
        for (int i = 0; i < m_Classifiers.length; i++)
            text.append(m_Classifiers[i].toString() + "\n\n");

        return text.toString();
    }

    /**
     * Builds the classifier to generate a partition.
     */
    public void generatePartition(Instances data) throws Exception {

        if (m_Classifier instanceof PartitionGenerator)
            buildClassifier(data);
        else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Computes an array that indicates leaf membership
     */
    public double[] getMembershipValues(Instance inst) throws Exception {

        if (m_Classifier instanceof PartitionGenerator) {
            ArrayList<double[]> al = new ArrayList<double[]>();
            int size = 0;
            for (int i = 0; i < m_Classifiers.length; i++) {
                double[] r = ((PartitionGenerator) m_Classifiers[i]).getMembershipValues(inst);
                size += r.length;
                al.add(r);
            }
            double[] values = new double[size];
            int pos = 0;
            for (double[] v : al) {
                System.arraycopy(v, 0, values, pos, v.length);
                pos += v.length;
            }
            return values;
        } else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Returns the number of elements in the partition.
     */
    public int numElements() throws Exception {

        if (m_Classifier instanceof PartitionGenerator) {
            int size = 0;
            for (int i = 0; i < m_Classifiers.length; i++) {
                size += ((PartitionGenerator) m_Classifiers[i]).numElements();
            }
            return size;
        } else
            throw new Exception("Classifier: " + getClassifierSpec() + " cannot generate a partition");
    }

    /**
     * Returns the revision string.
     * 
     * @return      the revision
     */
    public String getRevision() {
        return RevisionUtils.extract("$Revision$");
    }

    /**
     * Main method for testing this class.
     *
     * @param argv the options
     */
    public static void main(String[] argv) {
        runClassifier(new RandomCommittee(), argv);
    }
}