Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * LinearUnit.java * Copyright (C) 2001-2012 University of Waikato, Hamilton, New Zealand */ package weka.classifiers.functions.neural; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * This can be used by the * neuralnode to perform all it's computations (as a Linear unit). * * @author Malcolm Ware (mfw4@cs.waikato.ac.nz) * @version $Revision$ */ public class LinearUnit implements NeuralMethod, RevisionHandler { /** for serialization */ private static final long serialVersionUID = 8572152807755673630L; /** * This function calculates what the output value should be. * @param node The node to calculate the value for. * @return The value. */ public double outputValue(NeuralNode node) { double[] weights = node.getWeights(); NeuralConnection[] inputs = node.getInputs(); double value = weights[0]; for (int noa = 0; noa < node.getNumInputs(); noa++) { value += inputs[noa].outputValue(true) * weights[noa + 1]; } return value; } /** * This function calculates what the error value should be. * @param node The node to calculate the error for. * @return The error. */ public double errorValue(NeuralNode node) { //then calculate the error. NeuralConnection[] outputs = node.getOutputs(); int[] oNums = node.getOutputNums(); double error = 0; for (int noa = 0; noa < node.getNumOutputs(); noa++) { error += outputs[noa].errorValue(true) * outputs[noa].weightValue(oNums[noa]); } return error; } /** * This function will calculate what the change in weights should be * and also update them. * @param node The node to update the weights for. * @param learn The learning rate to use. * @param momentum The momentum to use. */ public void updateWeights(NeuralNode node, double learn, double momentum) { NeuralConnection[] inputs = node.getInputs(); double[] cWeights = node.getChangeInWeights(); double[] weights = node.getWeights(); double learnTimesError = 0; learnTimesError = learn * node.errorValue(false); double c = learnTimesError + momentum * cWeights[0]; weights[0] += c; cWeights[0] = c; int stopValue = node.getNumInputs() + 1; for (int noa = 1; noa < stopValue; noa++) { c = learnTimesError * inputs[noa - 1].outputValue(false); c += momentum * cWeights[noa]; weights[noa] += c; cWeights[noa] = c; } } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } }