weka.classifiers.functions.GaussianProcesses.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.functions.GaussianProcesses.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 *    GaussianProcesses.java
 *    Copyright (C) 2005-2012,2015 University of Waikato
 */

package weka.classifiers.functions;

import weka.classifiers.ConditionalDensityEstimator;
import weka.classifiers.IntervalEstimator;
import weka.classifiers.RandomizableClassifier;
import weka.classifiers.functions.supportVector.CachedKernel;
import weka.classifiers.functions.supportVector.Kernel;
import weka.classifiers.functions.supportVector.PolyKernel;
import weka.core.Capabilities;
import weka.core.Capabilities.Capability;
import weka.core.Instance;
import weka.core.Instances;
import weka.core.Option;
import weka.core.OptionHandler;
import weka.core.SelectedTag;
import weka.core.Statistics;
import weka.core.Tag;
import weka.core.TechnicalInformation;
import weka.core.TechnicalInformation.Field;
import weka.core.TechnicalInformation.Type;
import weka.core.TechnicalInformationHandler;
import weka.core.Utils;
import weka.core.WeightedInstancesHandler;
import weka.filters.Filter;
import weka.filters.unsupervised.attribute.NominalToBinary;
import weka.filters.unsupervised.attribute.Normalize;
import weka.filters.unsupervised.attribute.ReplaceMissingValues;
import weka.filters.unsupervised.attribute.Standardize;

import no.uib.cipr.matrix.*;
import no.uib.cipr.matrix.Matrix;

import java.util.Collections;
import java.util.Enumeration;

/**
 * <!-- globalinfo-start -->
 * * Implements Gaussian processes for regression without hyperparameter-tuning. To make choosing an appropriate noise level easier, this implementation applies normalization/standardization to the target attribute as well as the other attributes (if  normalization/standardizaton is turned on). Missing values are replaced by the global mean/mode. Nominal attributes are converted to binary ones. Note that kernel caching is turned off if the kernel used implements CachedKernel.
 * * <br><br>
 * <!-- globalinfo-end -->
 * 
 * <!-- technical-bibtex-start -->
 * * BibTeX:
 * * <pre>
 * * &#64;misc{Mackay1998,
 * *    address = {Dept. of Physics, Cambridge University, UK},
 * *    author = {David J.C. Mackay},
 * *    title = {Introduction to Gaussian Processes},
 * *    year = {1998},
 * *    PS = {http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz}
 * * }
 * * </pre>
 * * <br><br>
 * <!-- technical-bibtex-end -->
 * 
 * <!-- options-start -->
 * * Valid options are: <p>
 * * 
 * * <pre> -L &lt;double&gt;
 * *  Level of Gaussian Noise wrt transformed target. (default 1)</pre>
 * * 
 * * <pre> -N
 * *  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre>
 * * 
 * * <pre> -K &lt;classname and parameters&gt;
 * *  The Kernel to use.
 * *  (default: weka.classifiers.functions.supportVector.PolyKernel)</pre>
 * * 
 * * <pre> -S &lt;num&gt;
 * *  Random number seed.
 * *  (default 1)</pre>
 * * 
 * * <pre> -output-debug-info
 * *  If set, classifier is run in debug mode and
 * *  may output additional info to the console</pre>
 * * 
 * * <pre> -do-not-check-capabilities
 * *  If set, classifier capabilities are not checked before classifier is built
 * *  (use with caution).</pre>
 * * 
 * * <pre> -num-decimal-places
 * *  The number of decimal places for the output of numbers in the model (default 2).</pre>
 * * 
 * * <pre> 
 * * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
 * * </pre>
 * * 
 * * <pre> -E &lt;num&gt;
 * *  The Exponent to use.
 * *  (default: 1.0)</pre>
 * * 
 * * <pre> -L
 * *  Use lower-order terms.
 * *  (default: no)</pre>
 * * 
 * * <pre> -C &lt;num&gt;
 * *  The size of the cache (a prime number), 0 for full cache and 
 * *  -1 to turn it off.
 * *  (default: 250007)</pre>
 * * 
 * * <pre> -output-debug-info
 * *  Enables debugging output (if available) to be printed.
 * *  (default: off)</pre>
 * * 
 * * <pre> -no-checks
 * *  Turns off all checks - use with caution!
 * *  (default: checks on)</pre>
 * * 
 * <!-- options-end -->
 * 
 * @author Kurt Driessens (kurtd@cs.waikato.ac.nz)
 * @author Remco Bouckaert (remco@cs.waikato.ac.nz)
 * @author Eibe Frank, University of Waikato
 * @version $Revision$
 */
public class GaussianProcesses extends RandomizableClassifier implements IntervalEstimator,
        ConditionalDensityEstimator, TechnicalInformationHandler, WeightedInstancesHandler {

    /** for serialization */
    static final long serialVersionUID = -8620066949967678545L;

    /** The filter used to make attributes numeric. */
    protected NominalToBinary m_NominalToBinary;

    /** normalizes the data */
    public static final int FILTER_NORMALIZE = 0;

    /** standardizes the data */
    public static final int FILTER_STANDARDIZE = 1;

    /** no filter */
    public static final int FILTER_NONE = 2;

    /** The filter to apply to the training data */
    public static final Tag[] TAGS_FILTER = { new Tag(FILTER_NORMALIZE, "Normalize training data"),
            new Tag(FILTER_STANDARDIZE, "Standardize training data"),
            new Tag(FILTER_NONE, "No normalization/standardization"), };

    /** The filter used to standardize/normalize all values. */
    protected Filter m_Filter = null;

    /** Whether to normalize/standardize/neither */
    protected int m_filterType = FILTER_NORMALIZE;

    /** The filter used to get rid of missing values. */
    protected ReplaceMissingValues m_Missing;

    /**
     * Turn off all checks and conversions? Turning them off assumes that data is
     * purely numeric, doesn't contain any missing values, and has a numeric
     * class.
     */
    protected boolean m_checksTurnedOff = false;

    /** Gaussian Noise Value. */
    protected double m_delta = 1;

    /** The squared noise value. */
    protected double m_deltaSquared = 1;

    /**
     * The parameters of the linear transformation realized by the filter on the
     * class attribute
     */
    protected double m_Alin;
    protected double m_Blin;

    /** Template of kernel to use */
    protected Kernel m_kernel = new PolyKernel();

    /** Actual kernel object to use */
    protected Kernel m_actualKernel;

    /** The number of training instances */
    protected int m_NumTrain = 0;

    /** The training data. */
    protected double m_avg_target;

    /** (negative) covariance matrix in symmetric matrix representation **/
    public Matrix m_L;

    /** The vector of target values. */
    protected Vector m_t;

    /** The weight of the training instances. */
    protected double[] m_weights;

    /**
     * Returns a string describing classifier
     * 
     * @return a description suitable for displaying in the explorer/experimenter
     *         gui
     */
    public String globalInfo() {

        return " Implements Gaussian processes for "
                + "regression without hyperparameter-tuning. To make choosing an "
                + "appropriate noise level easier, this implementation applies "
                + "normalization/standardization to the target attribute as well " + "as the other attributes (if "
                + " normalization/standardizaton is turned on). Missing values "
                + "are replaced by the global mean/mode. Nominal attributes are "
                + "converted to binary ones. Note that kernel caching is turned off "
                + "if the kernel used implements CachedKernel.";
    }

    /**
     * Returns an instance of a TechnicalInformation object, containing detailed
     * information about the technical background of this class, e.g., paper
     * reference or book this class is based on.
     * 
     * @return the technical information about this class
     */
    @Override
    public TechnicalInformation getTechnicalInformation() {
        TechnicalInformation result;

        result = new TechnicalInformation(Type.MISC);
        result.setValue(Field.AUTHOR, "David J.C. Mackay");
        result.setValue(Field.YEAR, "1998");
        result.setValue(Field.TITLE, "Introduction to Gaussian Processes");
        result.setValue(Field.ADDRESS, "Dept. of Physics, Cambridge University, UK");
        result.setValue(Field.PS, "http://wol.ra.phy.cam.ac.uk/mackay/gpB.ps.gz");

        return result;
    }

    /**
     * Returns default capabilities of the classifier.
     * 
     * @return the capabilities of this classifier
     */
    @Override
    public Capabilities getCapabilities() {
        Capabilities result = getKernel().getCapabilities();
        result.setOwner(this);

        // attribute
        result.enableAllAttributeDependencies();
        // with NominalToBinary we can also handle nominal attributes, but only
        // if the kernel can handle numeric attributes
        if (result.handles(Capability.NUMERIC_ATTRIBUTES)) {
            result.enable(Capability.NOMINAL_ATTRIBUTES);
        }
        result.enable(Capability.MISSING_VALUES);

        // class
        result.disableAllClasses();
        result.disableAllClassDependencies();
        result.disable(Capability.NO_CLASS);
        result.enable(Capability.NUMERIC_CLASS);
        result.enable(Capability.DATE_CLASS);
        result.enable(Capability.MISSING_CLASS_VALUES);

        return result;
    }

    /**
     * Method for building the classifier.
     * 
     * @param insts the set of training instances
     * @throws Exception if the classifier can't be built successfully
     */
    @Override
    public void buildClassifier(Instances insts) throws Exception {

        // check the set of training instances
        if (!m_checksTurnedOff) {
            // can classifier handle the data?
            getCapabilities().testWithFail(insts);

            // remove instances with missing class
            insts = new Instances(insts);
            insts.deleteWithMissingClass();
            m_Missing = new ReplaceMissingValues();
            m_Missing.setInputFormat(insts);
            insts = Filter.useFilter(insts, m_Missing);
        } else {
            m_Missing = null;
        }

        if (getCapabilities().handles(Capability.NUMERIC_ATTRIBUTES)) {
            boolean onlyNumeric = true;
            if (!m_checksTurnedOff) {
                for (int i = 0; i < insts.numAttributes(); i++) {
                    if (i != insts.classIndex()) {
                        if (!insts.attribute(i).isNumeric()) {
                            onlyNumeric = false;
                            break;
                        }
                    }
                }
            }

            if (!onlyNumeric) {
                m_NominalToBinary = new NominalToBinary();
                m_NominalToBinary.setInputFormat(insts);
                insts = Filter.useFilter(insts, m_NominalToBinary);
            } else {
                m_NominalToBinary = null;
            }
        } else {
            m_NominalToBinary = null;
        }

        if (m_filterType == FILTER_STANDARDIZE) {
            m_Filter = new Standardize();
            ((Standardize) m_Filter).setIgnoreClass(true);
            m_Filter.setInputFormat(insts);
            insts = Filter.useFilter(insts, m_Filter);
        } else if (m_filterType == FILTER_NORMALIZE) {
            m_Filter = new Normalize();
            ((Normalize) m_Filter).setIgnoreClass(true);
            m_Filter.setInputFormat(insts);
            insts = Filter.useFilter(insts, m_Filter);
        } else {
            m_Filter = null;
        }

        m_NumTrain = insts.numInstances();

        // determine which linear transformation has been
        // applied to the class by the filter
        if (m_Filter != null) {
            Instance witness = (Instance) insts.instance(0).copy();
            witness.setValue(insts.classIndex(), 0);
            m_Filter.input(witness);
            m_Filter.batchFinished();
            Instance res = m_Filter.output();
            m_Blin = res.value(insts.classIndex());
            witness.setValue(insts.classIndex(), 1);
            m_Filter.input(witness);
            m_Filter.batchFinished();
            res = m_Filter.output();
            m_Alin = res.value(insts.classIndex()) - m_Blin;
        } else {
            m_Alin = 1.0;
            m_Blin = 0.0;
        }

        // Initialize kernel
        m_actualKernel = Kernel.makeCopy(m_kernel);
        if (m_kernel instanceof CachedKernel) {
            ((CachedKernel) m_actualKernel).setCacheSize(-1); // We don't need a cache at all
        }
        m_actualKernel.buildKernel(insts);

        // Compute average target value
        double sum = 0.0;
        for (int i = 0; i < insts.numInstances(); i++) {
            sum += insts.instance(i).weight() * insts.instance(i).classValue();
        }
        m_avg_target = sum / insts.sumOfWeights();

        // Store squared noise level
        m_deltaSquared = m_delta * m_delta;

        // Store square roots of instance m_weights
        m_weights = new double[insts.numInstances()];
        for (int i = 0; i < insts.numInstances(); i++) {
            m_weights[i] = Math.sqrt(insts.instance(i).weight());
        }

        // initialize kernel matrix/covariance matrix
        int n = insts.numInstances();
        m_L = new UpperSPDDenseMatrix(n);
        for (int i = 0; i < n; i++) {
            for (int j = i + 1; j < n; j++) {
                m_L.set(i, j, m_weights[i] * m_weights[j] * m_actualKernel.eval(i, j, insts.instance(i)));
            }
            m_L.set(i, i,
                    m_weights[i] * m_weights[i] * m_actualKernel.eval(i, i, insts.instance(i)) + m_deltaSquared);
        }

        // Compute inverse of kernel matrix
        m_L = new DenseCholesky(n, true).factor((UpperSPDDenseMatrix) m_L).solve(Matrices.identity(n));
        m_L = new UpperSPDDenseMatrix(m_L); // Convert from DenseMatrix

        // Compute t
        Vector tt = new DenseVector(n);
        for (int i = 0; i < n; i++) {
            tt.set(i, m_weights[i] * (insts.instance(i).classValue() - m_avg_target));
        }
        m_t = m_L.mult(tt, new DenseVector(insts.numInstances()));

    } // buildClassifier

    /**
     * Classifies a given instance.
     * 
     * @param inst the instance to be classified
     * @return the classification
     * @throws Exception if instance could not be classified successfully
     */
    @Override
    public double classifyInstance(Instance inst) throws Exception {

        // Filter instance
        inst = filterInstance(inst);

        // Build K vector
        Vector k = new DenseVector(m_NumTrain);
        for (int i = 0; i < m_NumTrain; i++) {
            k.set(i, m_weights[i] * m_actualKernel.eval(-1, i, inst));
        }

        double result = (k.dot(m_t) + m_avg_target - m_Blin) / m_Alin;

        return result;

    }

    /**
     * Filters an instance.
     */
    protected Instance filterInstance(Instance inst) throws Exception {

        if (!m_checksTurnedOff) {
            m_Missing.input(inst);
            m_Missing.batchFinished();
            inst = m_Missing.output();
        }

        if (m_NominalToBinary != null) {
            m_NominalToBinary.input(inst);
            m_NominalToBinary.batchFinished();
            inst = m_NominalToBinary.output();
        }

        if (m_Filter != null) {
            m_Filter.input(inst);
            m_Filter.batchFinished();
            inst = m_Filter.output();
        }
        return inst;
    }

    /**
     * Computes standard deviation for given instance, without transforming target
     * back into original space.
     */
    protected double computeStdDev(Instance inst, Vector k) throws Exception {

        double kappa = m_actualKernel.eval(-1, -1, inst) + m_deltaSquared;

        double s = m_L.mult(k, new DenseVector(k.size())).dot(k);

        double sigma = m_delta;
        if (kappa > s) {
            sigma = Math.sqrt(kappa - s);
        }

        return sigma;
    }

    /**
     * Computes a prediction interval for the given instance and confidence level.
     * 
     * @param inst the instance to make the prediction for
     * @param confidenceLevel the percentage of cases the interval should cover
     * @return a 1*2 array that contains the boundaries of the interval
     * @throws Exception if interval could not be estimated successfully
     */
    @Override
    public double[][] predictIntervals(Instance inst, double confidenceLevel) throws Exception {

        inst = filterInstance(inst);

        // Build K vector (and Kappa)
        Vector k = new DenseVector(m_NumTrain);
        for (int i = 0; i < m_NumTrain; i++) {
            k.set(i, m_weights[i] * m_actualKernel.eval(-1, i, inst));
        }

        double estimate = k.dot(m_t) + m_avg_target;

        double sigma = computeStdDev(inst, k);

        confidenceLevel = 1.0 - ((1.0 - confidenceLevel) / 2.0);

        double z = Statistics.normalInverse(confidenceLevel);

        double[][] interval = new double[1][2];

        interval[0][0] = estimate - z * sigma;
        interval[0][1] = estimate + z * sigma;

        interval[0][0] = (interval[0][0] - m_Blin) / m_Alin;
        interval[0][1] = (interval[0][1] - m_Blin) / m_Alin;

        return interval;

    }

    /**
     * Gives standard deviation of the prediction at the given instance.
     * 
     * @param inst the instance to get the standard deviation for
     * @return the standard deviation
     * @throws Exception if computation fails
     */
    public double getStandardDeviation(Instance inst) throws Exception {

        inst = filterInstance(inst);

        // Build K vector (and Kappa)
        Vector k = new DenseVector(m_NumTrain);
        for (int i = 0; i < m_NumTrain; i++) {
            k.set(i, m_weights[i] * m_actualKernel.eval(-1, i, inst));
        }

        return computeStdDev(inst, k) / m_Alin;
    }

    /**
     * Returns natural logarithm of density estimate for given value based on
     * given instance.
     * 
     * @param inst the instance to make the prediction for.
     * @param value the value to make the prediction for.
     * @return the natural logarithm of the density estimate
     * @exception Exception if the density cannot be computed
     */
    @Override
    public double logDensity(Instance inst, double value) throws Exception {

        inst = filterInstance(inst);

        // Build K vector (and Kappa)
        Vector k = new DenseVector(m_NumTrain);
        for (int i = 0; i < m_NumTrain; i++) {
            k.set(i, m_weights[i] * m_actualKernel.eval(-1, i, inst));
        }

        double estimate = k.dot(m_t) + m_avg_target;

        double sigma = computeStdDev(inst, k);

        // transform to GP space
        value = value * m_Alin + m_Blin;
        // center around estimate
        value = value - estimate;
        double z = -Math.log(sigma * Math.sqrt(2 * Math.PI)) - value * value / (2.0 * sigma * sigma);

        return z + Math.log(m_Alin);
    }

    /**
     * Returns an enumeration describing the available options.
     * 
     * @return an enumeration of all the available options.
     */
    @Override
    public Enumeration<Option> listOptions() {

        java.util.Vector<Option> result = new java.util.Vector<Option>();

        result.addElement(new Option("\tLevel of Gaussian Noise wrt transformed target." + " (default 1)", "L", 1,
                "-L <double>"));

        result.addElement(new Option("\tWhether to 0=normalize/1=standardize/2=neither. " + "(default 0=normalize)",
                "N", 1, "-N"));

        result.addElement(new Option(
                "\tThe Kernel to use.\n" + "\t(default: weka.classifiers.functions.supportVector.PolyKernel)", "K",
                1, "-K <classname and parameters>"));

        result.addAll(Collections.list(super.listOptions()));

        result.addElement(
                new Option("", "", 0, "\nOptions specific to kernel " + getKernel().getClass().getName() + ":"));

        result.addAll(Collections.list(((OptionHandler) getKernel()).listOptions()));

        return result.elements();
    }

    /**
     * Parses a given list of options.
     * <p/>
     * 
     * <!-- options-start -->
     * * Valid options are: <p>
     * * 
     * * <pre> -L &lt;double&gt;
     * *  Level of Gaussian Noise wrt transformed target. (default 1)</pre>
     * * 
     * * <pre> -N
     * *  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre>
     * * 
     * * <pre> -K &lt;classname and parameters&gt;
     * *  The Kernel to use.
     * *  (default: weka.classifiers.functions.supportVector.PolyKernel)</pre>
     * * 
     * * <pre> -S &lt;num&gt;
     * *  Random number seed.
     * *  (default 1)</pre>
     * * 
     * * <pre> -output-debug-info
     * *  If set, classifier is run in debug mode and
     * *  may output additional info to the console</pre>
     * * 
     * * <pre> -do-not-check-capabilities
     * *  If set, classifier capabilities are not checked before classifier is built
     * *  (use with caution).</pre>
     * * 
     * * <pre> -num-decimal-places
     * *  The number of decimal places for the output of numbers in the model (default 2).</pre>
     * * 
     * * <pre> 
     * * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:
     * * </pre>
     * * 
     * * <pre> -E &lt;num&gt;
     * *  The Exponent to use.
     * *  (default: 1.0)</pre>
     * * 
     * * <pre> -L
     * *  Use lower-order terms.
     * *  (default: no)</pre>
     * * 
     * * <pre> -C &lt;num&gt;
     * *  The size of the cache (a prime number), 0 for full cache and 
     * *  -1 to turn it off.
     * *  (default: 250007)</pre>
     * * 
     * * <pre> -output-debug-info
     * *  Enables debugging output (if available) to be printed.
     * *  (default: off)</pre>
     * * 
     * * <pre> -no-checks
     * *  Turns off all checks - use with caution!
     * *  (default: checks on)</pre>
     * * 
     * <!-- options-end -->
     * 
     * @param options the list of options as an array of strings
     * @throws Exception if an option is not supported
     */
    @Override
    public void setOptions(String[] options) throws Exception {
        String tmpStr;
        String[] tmpOptions;

        tmpStr = Utils.getOption('L', options);
        if (tmpStr.length() != 0) {
            setNoise(Double.parseDouble(tmpStr));
        } else {
            setNoise(1);
        }

        tmpStr = Utils.getOption('N', options);
        if (tmpStr.length() != 0) {
            setFilterType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_FILTER));
        } else {
            setFilterType(new SelectedTag(FILTER_NORMALIZE, TAGS_FILTER));
        }

        tmpStr = Utils.getOption('K', options);
        tmpOptions = Utils.splitOptions(tmpStr);
        if (tmpOptions.length != 0) {
            tmpStr = tmpOptions[0];
            tmpOptions[0] = "";
            setKernel(Kernel.forName(tmpStr, tmpOptions));
        }

        super.setOptions(options);

        Utils.checkForRemainingOptions(options);
    }

    /**
     * Gets the current settings of the classifier.
     * 
     * @return an array of strings suitable for passing to setOptions
     */
    @Override
    public String[] getOptions() {

        java.util.Vector<String> result = new java.util.Vector<String>();

        result.addElement("-L");
        result.addElement("" + getNoise());

        result.addElement("-N");
        result.addElement("" + m_filterType);

        result.addElement("-K");
        result.addElement("" + m_kernel.getClass().getName() + " " + Utils.joinOptions(m_kernel.getOptions()));

        Collections.addAll(result, super.getOptions());

        return result.toArray(new String[result.size()]);
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String kernelTipText() {
        return "The kernel to use.";
    }

    /**
     * Gets the kernel to use.
     * 
     * @return the kernel
     */
    public Kernel getKernel() {
        return m_kernel;
    }

    /**
     * Sets the kernel to use.
     * 
     * @param value the new kernel
     */
    public void setKernel(Kernel value) {
        m_kernel = value;
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String filterTypeTipText() {
        return "Determines how/if the data will be transformed.";
    }

    /**
     * Gets how the training data will be transformed. Will be one of
     * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.
     * 
     * @return the filtering mode
     */
    public SelectedTag getFilterType() {

        return new SelectedTag(m_filterType, TAGS_FILTER);
    }

    /**
     * Sets how the training data will be transformed. Should be one of
     * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.
     * 
     * @param newType the new filtering mode
     */
    public void setFilterType(SelectedTag newType) {

        if (newType.getTags() == TAGS_FILTER) {
            m_filterType = newType.getSelectedTag().getID();
        }
    }

    /**
     * Returns the tip text for this property
     * 
     * @return tip text for this property suitable for displaying in the
     *         explorer/experimenter gui
     */
    public String noiseTipText() {
        return "The level of Gaussian Noise (added to the diagonal of the Covariance Matrix), after the "
                + "target has been normalized/standardized/left unchanged).";
    }

    /**
     * Get the value of noise.
     * 
     * @return Value of noise.
     */
    public double getNoise() {
        return m_delta;
    }

    /**
     * Set the level of Gaussian Noise.
     * 
     * @param v Value to assign to noise.
     */
    public void setNoise(double v) {
        m_delta = v;
    }

    /**
     * Prints out the classifier.
     * 
     * @return a description of the classifier as a string
     */
    @Override
    public String toString() {

        StringBuffer text = new StringBuffer();

        if (m_t == null) {
            return "Gaussian Processes: No model built yet.";
        }

        try {

            text.append("Gaussian Processes\n\n");
            text.append("Kernel used:\n  " + m_kernel.toString() + "\n\n");

            text.append("All values shown based on: " + TAGS_FILTER[m_filterType].getReadable() + "\n\n");

            text.append("Average Target Value : " + m_avg_target + "\n");

            text.append("Inverted Covariance Matrix:\n");
            double min = m_L.get(0, 0);
            double max = m_L.get(0, 0);
            for (int i = 0; i < m_NumTrain; i++) {
                for (int j = 0; j <= i; j++) {
                    if (m_L.get(i, j) < min) {
                        min = m_L.get(i, j);
                    } else if (m_L.get(i, j) > max) {
                        max = m_L.get(i, j);
                    }
                }
            }
            text.append("    Lowest Value = " + min + "\n");
            text.append("    Highest Value = " + max + "\n");
            text.append("Inverted Covariance Matrix * Target-value Vector:\n");
            min = m_t.get(0);
            max = m_t.get(0);
            for (int i = 0; i < m_NumTrain; i++) {
                if (m_t.get(i) < min) {
                    min = m_t.get(i);
                } else if (m_t.get(i) > max) {
                    max = m_t.get(i);
                }
            }
            text.append("    Lowest Value = " + min + "\n");
            text.append("    Highest Value = " + max + "\n \n");

        } catch (Exception e) {
            return "Can't print the classifier.";
        }

        return text.toString();
    }

    /**
     * Main method for testing this class.
     * 
     * @param argv the commandline parameters
     */
    public static void main(String[] argv) {

        runClassifier(new GaussianProcesses(), argv);
    }
}