weka.classifiers.evaluation.output.prediction.PlainText.java Source code

Java tutorial

Introduction

Here is the source code for weka.classifiers.evaluation.output.prediction.PlainText.java

Source

/*
 *   This program is free software: you can redistribute it and/or modify
 *   it under the terms of the GNU General Public License as published by
 *   the Free Software Foundation, either version 3 of the License, or
 *   (at your option) any later version.
 *
 *   This program is distributed in the hope that it will be useful,
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *   GNU General Public License for more details.
 *
 *   You should have received a copy of the GNU General Public License
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

/*
 * PlainText.java
 * Copyright (C) 2009-2012 University of Waikato, Hamilton, New Zealand
 */

package weka.classifiers.evaluation.output.prediction;

import weka.classifiers.Classifier;
import weka.core.Instance;
import weka.core.Utils;

/**
 <!-- globalinfo-start -->
 * Outputs the predictions in plain text.
 * <p/>
 <!-- globalinfo-end -->
 *
 <!-- options-start -->
 * Valid options are: <p/>
 * 
 * <pre> -p &lt;range&gt;
 *  The range of attributes to print in addition to the classification.
 *  (default: none)</pre>
 * 
 * <pre> -distribution
 *  Whether to turn on the output of the class distribution.
 *  Only for nominal class attributes.
 *  (default: off)</pre>
 * 
 * <pre> -decimals &lt;num&gt;
 *  The number of digits after the decimal point.
 *  (default: 3)</pre>
 * 
 * <pre> -file &lt;path&gt;
 *  The file to store the output in, instead of outputting it on stdout.
 *  Gets ignored if the supplied path is a directory.
 *  (default: .)</pre>
 * 
 * <pre> -suppress
 *  In case the data gets stored in a file, then this flag can be used
 *  to suppress the regular output.
 *  (default: not suppressed)</pre>
 * 
 <!-- options-end -->
 *
 * @author  fracpete (fracpete at waikato dot ac dot nz)
 * @version $Revision$
 */
public class PlainText extends AbstractOutput {

    /** for serialization. */
    private static final long serialVersionUID = 2033389864898242735L;

    /**
     * Returns a string describing the output generator.
     * 
     * @return       a description suitable for
     *          displaying in the GUI
     */
    public String globalInfo() {
        return "Outputs the predictions in plain text.";
    }

    /**
     * Returns a short display text, to be used in comboboxes.
     * 
     * @return       a short display text
     */
    public String getDisplay() {
        return "Plain text";
    }

    /**
     * Performs the actual printing of the header.
     */
    protected void doPrintHeader() {
        if (m_Header.classAttribute().isNominal())
            if (m_OutputDistribution)
                append("    inst#     actual  predicted error distribution");
            else
                append("    inst#     actual  predicted error prediction");
        else
            append("    inst#     actual  predicted      error");

        if (m_Attributes != null) {
            append(" (");
            boolean first = true;
            for (int i = 0; i < m_Header.numAttributes(); i++) {
                if (i == m_Header.classIndex())
                    continue;

                if (m_Attributes.isInRange(i)) {
                    if (!first)
                        append(",");
                    append(m_Header.attribute(i).name());
                    first = false;
                }
            }
            append(")");
        }

        append("\n");
    }

    /**
     * Builds a string listing the attribute values in a specified range of indices,
     * separated by commas and enclosed in brackets.
     *
     * @param instance    the instance to print the values from
     * @return       a string listing values of the attributes in the range
     */
    protected String attributeValuesString(Instance instance) {
        StringBuffer text = new StringBuffer();
        if (m_Attributes != null) {
            boolean firstOutput = true;
            m_Attributes.setUpper(instance.numAttributes() - 1);
            for (int i = 0; i < instance.numAttributes(); i++)
                if (m_Attributes.isInRange(i) && i != instance.classIndex()) {
                    if (firstOutput)
                        text.append("(");
                    else
                        text.append(",");
                    text.append(instance.toString(i));
                    firstOutput = false;
                }
            if (!firstOutput)
                text.append(")");
        }
        return text.toString();
    }

    /**
     * Store the prediction made by the classifier as a string.
     * 
     * @param dist        the distribution to use
     * @param inst        the instance to generate text from
     * @param index       the index in the dataset
     * @throws Exception  if something goes wrong
     */
    protected void doPrintClassification(double[] dist, Instance inst, int index) throws Exception {
        int width = 7 + m_NumDecimals;
        int prec = m_NumDecimals;

        Instance withMissing = (Instance) inst.copy();
        withMissing.setDataset(inst.dataset());

        double predValue = 0;
        if (Utils.sum(dist) == 0) {
            predValue = Utils.missingValue();
        } else {
            if (inst.classAttribute().isNominal()) {
                predValue = Utils.maxIndex(dist);
            } else {
                predValue = dist[0];
            }
        }

        // index
        append(Utils.padLeftAndAllowOverflow("" + (index + 1), 9));

        if (inst.dataset().classAttribute().isNumeric()) {
            // actual
            if (inst.classIsMissing())
                append(" " + Utils.padLeft("?", width));
            else
                append(" " + Utils.doubleToString(inst.classValue(), width, prec));
            // predicted
            if (Utils.isMissingValue(predValue))
                append(" " + Utils.padLeft("?", width));
            else
                append(" " + Utils.doubleToString(predValue, width, prec));
            // error
            if (Utils.isMissingValue(predValue) || inst.classIsMissing())
                append(" " + Utils.padLeft("?", width));
            else
                append(" " + Utils.doubleToString(predValue - inst.classValue(), width, prec));
        } else {
            // actual
            append(" " + Utils.padLeftAndAllowOverflow(
                    ((int) inst.classValue() + 1) + ":" + inst.toString(inst.classIndex()), width));
            // predicted
            if (Utils.isMissingValue(predValue))
                append(" " + Utils.padLeft("?", width));
            else
                append(" " + Utils.padLeftAndAllowOverflow(
                        ((int) predValue + 1) + ":" + inst.dataset().classAttribute().value((int) predValue),
                        width));
            // error?
            if (!Utils.isMissingValue(predValue) && !inst.classIsMissing()
                    && ((int) predValue + 1 != (int) inst.classValue() + 1))
                append(" " + "  +  ");
            else
                append(" " + "     ");
            // prediction/distribution
            if (m_OutputDistribution) {
                if (Utils.isMissingValue(predValue)) {
                    append(" " + "?");
                } else {
                    append(" ");
                    for (int n = 0; n < dist.length; n++) {
                        if (n > 0)
                            append(",");
                        if (n == (int) predValue)
                            append("*");
                        append(Utils.doubleToString(dist[n], prec));
                    }
                }
            } else {
                if (Utils.isMissingValue(predValue))
                    append(" " + "?");
                else
                    append(" " + Utils.doubleToString(dist[(int) predValue], prec));
            }
        }

        // attributes
        append(" " + attributeValuesString(withMissing) + "\n");

    }

    /**
     * Store the prediction made by the classifier as a string.
     * 
     * @param classifier   the classifier to use
     * @param inst   the instance to generate text from
     * @param index   the index in the dataset
     * @throws Exception   if something goes wrong
     */
    protected void doPrintClassification(Classifier classifier, Instance inst, int index) throws Exception {

        double[] d = classifier.distributionForInstance(inst);
        doPrintClassification(d, inst, index);
    }

    /**
     * Does nothing.
     */
    protected void doPrintFooter() {
    }
}