Java tutorial
/* * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ /* * NumericPrediction.java * Copyright (C) 2002-2012 University of Waikato, Hamilton, New Zealand * */ package weka.classifiers.evaluation; import java.io.Serializable; import weka.classifiers.IntervalEstimator; import weka.core.RevisionHandler; import weka.core.RevisionUtils; /** * Encapsulates an evaluatable numeric prediction: the predicted class value * plus the actual class value. * * @author Len Trigg (len@reeltwo.com) * @version $Revision$ */ public class NumericPrediction implements Prediction, Serializable, RevisionHandler { /** for serialization. */ private static final long serialVersionUID = -4880216423674233887L; /** The actual class value. */ private double m_Actual = MISSING_VALUE; /** The predicted class value. */ private double m_Predicted = MISSING_VALUE; /** The weight assigned to this prediction. */ private double m_Weight = 1; /** the prediction intervals. */ private double[][] m_PredictionIntervals; /** * Creates the NumericPrediction object with a default weight of 1.0. * * @param actual the actual value, or MISSING_VALUE. * @param predicted the predicted value, or MISSING_VALUE. */ public NumericPrediction(double actual, double predicted) { this(actual, predicted, 1); } /** * Creates the NumericPrediction object. * * @param actual the actual value, or MISSING_VALUE. * @param predicted the predicted value, or MISSING_VALUE. * @param weight the weight assigned to the prediction. */ public NumericPrediction(double actual, double predicted, double weight) { this(actual, predicted, weight, new double[0][]); } /** * Creates the NumericPrediction object. * * @param actual the actual value, or MISSING_VALUE. * @param predicted the predicted value, or MISSING_VALUE. * @param weight the weight assigned to the prediction. * @param predInt the prediction intervals from classifiers implementing * the <code>IntervalEstimator</code> interface. * @see IntervalEstimator */ public NumericPrediction(double actual, double predicted, double weight, double[][] predInt) { m_Actual = actual; m_Predicted = predicted; m_Weight = weight; setPredictionIntervals(predInt); } /** * Gets the actual class value. * * @return the actual class value, or MISSING_VALUE if no * prediction was made. */ public double actual() { return m_Actual; } /** * Gets the predicted class value. * * @return the predicted class value, or MISSING_VALUE if no * prediction was made. */ public double predicted() { return m_Predicted; } /** * Gets the weight assigned to this prediction. This is typically the weight * of the test instance the prediction was made for. * * @return the weight assigned to this prediction. */ public double weight() { return m_Weight; } /** * Calculates the prediction error. This is defined as the predicted * value minus the actual value. * * @return the error for this prediction, or * MISSING_VALUE if either the actual or predicted value * is missing. */ public double error() { if ((m_Actual == MISSING_VALUE) || (m_Predicted == MISSING_VALUE)) { return MISSING_VALUE; } return m_Predicted - m_Actual; } /** * Sets the prediction intervals for this prediction. * * @param predInt the prediction intervals */ public void setPredictionIntervals(double[][] predInt) { m_PredictionIntervals = predInt.clone(); } /** * Returns the predictions intervals. Only classifiers implementing the * <code>IntervalEstimator</code> interface. * * @return the prediction intervals. * @see IntervalEstimator */ public double[][] predictionIntervals() { return m_PredictionIntervals; } /** * Gets a human readable representation of this prediction. * * @return a human readable representation of this prediction. */ public String toString() { StringBuffer sb = new StringBuffer(); sb.append("NUM: ").append(actual()).append(' ').append(predicted()); sb.append(' ').append(weight()); return sb.toString(); } /** * Returns the revision string. * * @return the revision */ public String getRevision() { return RevisionUtils.extract("$Revision$"); } }